Design Considerations of Synaptic Device for Neuromorphic Computing

被引:0
|
作者
Yu, Shimeng [1 ]
Kuzum, Duygu [2 ,3 ]
Wong, H. -S. Philip [2 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
synaptice device; neuromorphic computing; learning; plasticity; PCM; RRAM; CBRAM; NANODEVICE; NEURONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital Boolean computing. Recently, two-terminal emerging memory devices that show electrically-triggered resistance modulation have been proposed as synaptic devices for neuromorphic computing. The synaptic device candidates include phase change memory (PCM), resistive RAM (RRAM) and conductive bridge RAM (CBRAM), etc. In this paper, we discuss the general design considerations of synaptic devices for plasticity and learning. As a rule of thumb for performance metrics assessment, an ideal synaptic device should have characteristics such as dimension, energy consumption, operation frequency, dynamic range, etc. that are scalable to biological systems with comparable complexity.
引用
收藏
页码:1062 / 1065
页数:4
相关论文
共 50 条
  • [31] A VLSI Design for Neuromorphic Computing
    Dean, Mark E.
    Daffron, Christopher
    2016 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2016, : 87 - 92
  • [32] Natural DNA biopolymer synaptic emulator for neuromorphic computing
    Lin, Yueh-Chen
    Hsiao, Tzu-Hsin
    Li, Yi-Ting
    Huang, Lin-Di
    Fruk, Ljiljana
    Hung, Yu-Chueh
    ORGANIC ELECTRONICS, 2023, 114
  • [33] Synaptic weighting in single flux quantum neuromorphic computing
    Schneider, M. L.
    Donnelly, C. A.
    Haygood, I. W.
    Wynn, A.
    Russek, S. E.
    Castellanos-Beltran, M. A.
    Dresselhaus, P. D.
    Hopkins, P. F.
    Pufall, M. R.
    Rippard, W. H.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] A Natural Organic Artificial Synaptic Device Made from a Honey and Carbon Nanotube Admixture for Neuromorphic Computing
    Tanim, Md Mehedi Hasan
    Templin, Zoe
    Hood, Kaleb
    Jiao, Jun
    Zhao, Feng
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (14):
  • [35] An artificial synaptic device based on 1,2-diphenylacetylene with femtojoule energy consumption for neuromorphic computing
    Duan, Mengyuan
    Liu, Jiesong
    Li, Zhengjie
    Jia, Xiaoyong
    Yang, Guanghong
    Zhang, Weifeng
    Jia, Caihong
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (20) : 7377 - 7385
  • [36] Organic Memristor with Synaptic Plasticity for Neuromorphic Computing Applications
    Zeng, Jianmin
    Chen, Xinhui
    Liu, Shuzhi
    Chen, Qilai
    Liu, Gang
    NANOMATERIALS, 2023, 13 (05)
  • [37] Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
    Wang Z.
    Joshi S.
    Savel'ev S.E.
    Jiang H.
    Midya R.
    Lin P.
    Hu M.
    Ge N.
    Strachan J.P.
    Li Z.
    Wu Q.
    Barnell M.
    Li G.-L.
    Xin H.L.
    Williams R.S.
    Xia Q.
    Yang J.J.
    Nature Materials, 2017, 16 (1) : 101 - 108
  • [38] High-performance synaptic transistors for neuromorphic computing
    Zhong, Hai
    Sun, Qin-Chao
    Li, Guo
    Du, Jian-Yu
    Huang, He-Yi
    Guo, Er-Jia
    He, Meng
    Wang, Can
    Yang, Guo-Zhen
    Ge, Chen
    Jin, Kui-Juan
    CHINESE PHYSICS B, 2020, 29 (04)
  • [39] Synaptic weighting in single flux quantum neuromorphic computing
    M. L. Schneider
    C. A. Donnelly
    I. W. Haygood
    A. Wynn
    S. E. Russek
    M. A. Castellanos-Beltran
    P. D. Dresselhaus
    P. F. Hopkins
    M. R. Pufall
    W. H. Rippard
    Scientific Reports, 10
  • [40] Synaptic devices based on silicon carbide for neuromorphic computing
    Ye, Boyu
    Liu, Xiao
    Wu, Chao
    Yan, Wensheng
    Pi, Xiaodong
    JOURNAL OF SEMICONDUCTORS, 2025, 46 (02)