Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

被引:8
|
作者
Qi, Jianan [1 ]
Tang, Yiqun [1 ]
Cheng, Zhao [1 ]
Xu, Rui [1 ]
Wang, Jingquan [1 ]
机构
[1] Southeast Univ, Sch Civil Engn, Minist Educ, Key Lab Concrete & Prestressed Concrete Struct, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
composite bridges; stud shear connector; ultra high performance concrete (UHPC); initial damage; shear strength; finite element analysis; HIGH-PERFORMANCE CONCRETE; MECHANICAL-PROPERTIES; FIBER; DECK; BEAMS; MODEL;
D O I
10.12989/acc.2020.9.4.413
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 50 条
  • [21] Experimental and numerical investigation on flexural behavior of steel-UHPC composite slabs with PBL shear connectors
    Li, Chuanxi
    Shi, Yu
    Xiao, Heyu
    Tan, Li
    He, Longfei
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [22] Fatigue Behavior of the Group Stud Shear Connectors in Steel-Concrete Composite Bridges
    Xu, Chen
    Sugiura, Kunitomo
    Su, Qingtian
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (08)
  • [23] Static behavior of stud shear connectors in elastic concrete-steel composite beams
    Han, Qinghua
    Wang, Yihong
    Xu, Jie
    Xing, Ying
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2015, 113 : 115 - 126
  • [24] Experimental studies of headed stud shear connectors in UHPC Steel composite slabs
    Gao, Xiao-Long
    Wang, Jun-Yan
    Yan, Jia-Bao
    STRUCTURAL ENGINEERING AND MECHANICS, 2020, 74 (05) : 657 - 670
  • [25] Behavior of short-headed stud connectors in orthotropic steel-UHPC composite bridge deck under fatigue loading
    Shi, Zhanchong
    Su, Qingtian
    Kavoura, Florentia
    Veljkovic, Milan
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 160
  • [26] Experimental and numerical investigations on the flexural behavior of steel-uhpc composite slabs with perfobond rib shear connectors
    Zhou M.
    Xiao J.-L.
    Yang T.-Y.
    Nie J.-G.
    Fan J.-S.
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (07): : 19 - 29
  • [27] Flexural and shear behavior of steel-UHPC composite beams: a review
    Benedetty, Carlos Alberto
    dos Santos, Vinicius Brother
    Krahl, Pablo Augusto
    Rossi, Alexandre
    Silva, Flavio de Andrade
    Cardoso, Daniel Carlos Taissum
    Martins, Carlos Humberto
    ENGINEERING STRUCTURES, 2023, 293
  • [28] Static performance of stud shear connectors and UHPC in deck-to-girder composite connection
    Semendary, Ali A. A.
    Stefaniuk, Heather L. L.
    Yamout, Diba
    Svecova, Dagmar
    ENGINEERING STRUCTURES, 2022, 255
  • [29] Fatigue performance of stud shear connectors in steel-concrete composite beam with initial damage
    Lu, Kaiwei
    Du, Linpu
    Xu, Qizhi
    Yao, Yiming
    Wang, Jingquan
    ENGINEERING STRUCTURES, 2023, 276
  • [30] Flexural behavior of steel-UHPC composite beams with different connectors in negative moment
    Sun, Guorui
    Shan, Baohua
    Kang, Jiayuan
    Zhou, Guangchun
    Journal of Constructional Steel Research, 2024, 216