Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling

被引:103
|
作者
Dong, Chun-Hai [1 ]
Rivarola, Maximo [1 ]
Resnick, Josephine S. [1 ]
Maggin, Benjamin D. [1 ]
Chang, Caren [1 ]
机构
[1] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
来源
PLANT JOURNAL | 2008年 / 53卷 / 02期
关键词
RTE1; ETR1; ethylene receptor; Golgi; localization; Arabidopsis;
D O I
10.1111/j.1365-313X.2007.03339.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethylene is an important plant growth regulator perceived by membrane-bound ethylene receptors. The ETR1 ethylene receptor is positively regulated by a predicted membrane protein, RTE1, based on genetic studies in Arabidopsis. RTE1 homologs exist in plants, animals and protists, but the molecular function of RTE1 is unknown. Here, we examine RTE1 expression and subcellular protein localization in order to gain a better understanding of RTE1 and its function in relation to ETR1. Arabidopsis plants transformed with the RTE1 promoter fused to the beta-glucuronidase (GUS) reporter gene revealed that RTE1 expression partly correlates with previously described sites of ETR1 expression or sites of ethylene response, such as the seedling root, root hairs and apical hook. RTE1 transcript levels are also enhanced by ethylene treatment, and reduced by the inhibition of ethylene signaling. For subcellular localization of RTE1, a functional RTE1 fusion to red fluorescent protein (RFP) was expressed under the control of the native RTE1 promoter. Using fluorescence microscopy, RTE1 was observed primarily at the Golgi apparatus and partially at the endoplasmic reticulum (ER) in stably transformed Arabidopsis protoplasts, roots and root hairs. Next, a functional ETR1 fusion to a 5xMyc epitope tag was expressed under the control of the native ETR1 promoter. Immunohistochemistry of root hairs not only showed ETR1 residing at the ER as previously reported, but revealed substantial localization of ETR1 at the Golgi apparatus. Lastly, we demonstrated the subcellular co-localization of RTE1 and ETR1. These findings support and enhance the genetic model that RTE1 plays a role in regulating ETR1.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 50 条
  • [31] Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana
    McDaniel, Brittany K.
    Binder, Brad M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (31) : 26094 - 26103
  • [32] Crystal structure of the catalytic domain of the ethylene receptor ETR1 from Arabidopsis thaliana
    Panneerselvam, Saravanan
    Dieckmann, Juchen Mueller
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S237 - S237
  • [33] Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes
    Liu, Qian
    Wen, Chi-Kuang
    PLANT PHYSIOLOGY, 2012, 158 (03) : 1193 - 1207
  • [34] Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain
    Stephan Schott-Verdugo
    Lena Müller
    Elisa Classen
    Holger Gohlke
    Georg Groth
    Scientific Reports, 9
  • [35] Impact of jasmonate esters on ETR1 ethylene binding and the triple response
    Linden, J. C.
    Schaller, G. E.
    ADVANCES IN PLANT ETHYLENE RESEARCH, 2007, : 69 - +
  • [36] Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1
    Voet-van-Vormizeele, Jan
    Groth, Georg
    MOLECULAR PLANT, 2008, 1 (02) : 380 - 387
  • [37] Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors
    Clark, KL
    Larsen, PB
    Wang, XX
    Chang, C
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) : 5401 - 5406
  • [38] Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain
    Schott-Verdugo, Stephan
    Mueller, Lena
    Classen, Elisa
    Gohlke, Holger
    Groth, Georg
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [39] A role of ETR1 in regulating leaf petiole elongation mediated by elevated temperature in Arabidopsis
    Yuancong Wang
    Bing He
    Lihua Ning
    Chao-Feng Huang
    Han Zhao
    Plant Growth Regulation, 2018, 86 : 311 - 321
  • [40] A role of ETR1 in regulating leaf petiole elongation mediated by elevated temperature in Arabidopsis
    Wang, Yuancong
    He, Bing
    Ning, Lihua
    Huang, Chao-Feng
    Zhao, Han
    PLANT GROWTH REGULATION, 2018, 86 (02) : 311 - 321