Analytical approximations to the l-wave solutions of the Klein-Gordon equation for a second Poschl-Teller like potential

被引:74
|
作者
Qiang, Wen-Chao [2 ]
Dong, Shi-Hai [1 ]
机构
[1] Inst Politecn Nacl, Dept Fis, Escuela Super Fis & Matemat, Mexico City 07738, DF, Mexico
[2] Xian Univ Architecture & Technol, Fac Sci, Xian 710055, Peoples R China
基金
美国国家科学基金会;
关键词
Klein-Gordon equation; second Poschl-Teller like potential; centrifugal term;
D O I
10.1016/j.physleta.2008.05.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present analytical solutions of the Klein-Gordon equation for the second Poschl-Teller like potential within the framework of an approximation to the centrifugal potential for any I state. The explicit expressions of bound state spectra and normalized eigenfunctions are obtained. We also numerically solved the Klein-Gordon equation without any approximation to centrifugal term for the same potential and compared numerical energy levels with approximately analytical results. It is found that the results are in good agreement with those obtained by other method for short-range potential. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4789 / 4792
页数:4
相关论文
共 50 条
  • [31] Solutions of the Second Poschl-Teller Potential Solved by an Improved Scheme to the Centrifugal Term
    You, Yuan
    Lu, Fa-Lin
    Sun, Dong-Sheng
    Chen, Chang-Yuan
    Dong, Shi-Hai
    FEW-BODY SYSTEMS, 2013, 54 (11) : 2125 - 2132
  • [32] THE SOLUTION OF THE SECOND POSCHL-TELLER LIKE POTENTIAL BY NIKIFOROV-UVAROV METHOD
    Miranda, M. G.
    Sun, Guo-Hua
    Dong, Shi-Hai
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (01) : 123 - 129
  • [33] Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl-Teller potential
    Edet, C. O.
    Amadi, P. O.
    Okorie, U. S.
    Tas, A.
    Ikot, A. N.
    Rampho, G.
    REVISTA MEXICANA DE FISICA, 2020, 66 (06) : 824 - 839
  • [34] Bound states of Klein-Gordon equation and Dirac equation for scalar and vector Poschl-Teller-type potentials
    Chen, G
    ACTA PHYSICA SINICA, 2001, 50 (09) : 1651 - 1653
  • [35] ANY l-STATE ANALYTICAL SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR THE WOODS-SAXON POTENTIAL
    Badalov, V. H.
    Ahmadov, H. I.
    Badalov, S. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (07) : 1463 - 1475
  • [36] Exact solutions of bound states of the Schrodinger equation with modified Poschl-Teller potential
    Chen, Changyuan
    Hu, Sizhu
    Wuli Xuebao/Acta Physica Sinica, 1995, 44 (01): : 9 - 15
  • [37] Exact Solutions of the Klein-Gordon Equation with Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Ita, Benedict I.
    FEW-BODY SYSTEMS, 2012, 53 (3-4) : 539 - 548
  • [38] Bound states of Klein-Gordon equation and Dirac equation for scalar and vector Poschl-Teller-type potentials
    Chen, Gang
    1653, Science Press (50):
  • [39] Approximate Solutions of Klein-Gordon Equation with Kratzer Potential
    Hassanabadi, H.
    Rahimov, H.
    Zarrinkamar, S.
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [40] Comment on 'Approximate analytical solutions of the Dirac equation with the Poschl-Teller potential including spin-orbit coupling'
    Akcay, H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (19)