A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis

被引:124
|
作者
Wan, Lanjun [1 ]
Li, Yuanyuan [1 ]
Chen, Keyu [1 ]
Gong, Kun [1 ]
Li, Changyun [1 ]
机构
[1] Hunan Univ Technol, Sch Comp Sci, Zhuzhou 412007, Peoples R China
关键词
Bearing fault diagnosis; MK-MMD; Domain discriminator; ResNet; Adaptive factor; NETWORK;
D O I
10.1016/j.measurement.2022.110752
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The traditional rolling bearing fault diagnosis methods are difficult to achieve effective cross-domain fault diagnosis. Therefore, a novel deep convolution multi-adversarial domain adaptation (DCMADA) model for rolling bearing fault diagnosis is proposed, which includes a feature extraction module, a domain adaptation module, and a fault identification module. In the feature extraction module, an improved deep residual network (ResNet) is used as the feature extractor to extract the transferable features from the raw vibration signals. In the domain adaptation module, the marginal and conditional distributions are adjusted using multi-kernel maximum mean discrepancy (MK-MMD) and multiple domain discriminators in the source and target domains, and an adaptive factor is designed to dynamically measure the relative importance of these two distributions. In the fault identification module, the classifier uses the extracted domain-invariant features to complete cross-domain fault identification. Experiments show that the model has superior transfer capability in cross-domain bearing fault diagnosis.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Wang, Xiaodong
    Liu, Feng
    SENSORS, 2020, 20 (01)
  • [32] Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis
    Zhao, Ke
    Jiang, Hongkai
    Wang, Kaibo
    Pei, Zeyu
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [33] Discrepant Adversarial Domain Adaptation Network for Rolling Bearing Intelligent Fault Diagnosis under Varying Working Condition
    Zheng, Kai
    Zhao, Pengyuan
    Xiong, Jinfeng
    Bai, Yin
    Li, Yongying
    Long, Zihao
    Zhang, Zheng
    ENGINEERING LETTERS, 2025, 33 (04) : 860 - 875
  • [34] Rolling bearing fault diagnosis based on manifold feature domain adaptation
    Zhou H.
    Huang T.
    Li Z.
    Zhong F.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (05): : 94 - 102
  • [35] Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning
    An, Jing
    Ai, Ping
    Liu, Dakun
    SHOCK AND VIBRATION, 2020, 2020
  • [36] Bearing fault diagnosis based on deep dynamic domain adaptation
    Wang J.
    Lei W.
    Liu H.
    Wei L.
    Han D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (14): : 245 - 250
  • [37] Internal adversarial guided unsupervised multi-domain adaptation network for collaborative fault diagnosis of bearing
    Shao H.
    Chen X.
    Cao H.
    Jiang H.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (07): : 1229 - 1240
  • [38] An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing
    Jin, Yongze
    Song, Xiaohao
    Yang, Yanxi
    Hei, Xinhong
    Feng, Nan
    Yang, Xubo
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [39] TripleGAN: Multi-Adversarial Network Domain Adaptation for Satellite Image Segmentation
    Wang, Yifei
    Wang, Siyi
    Xu, Meng
    Chen, Kai
    Xiong, Zhihua
    Wang, Huangang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2158 - 2163
  • [40] Implicit Discriminator Domain Adversarial Residual Network for Cross Domain Rolling Bearing Fault Diagnosis
    Li, Zhuorui
    Ma, Jun
    Wu, Jiande
    Li, Xiang
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73