High-throughput docking for lead generation

被引:293
|
作者
Abagyan, R
Totrov, M
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Molsoft, La Jolla, CA 92037 USA
关键词
D O I
10.1016/S1367-5931(00)00217-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent improvements in flexible docking technology may lead to a bigger role for computational methods in lead discovery. Although fast and accurate computational prediction of binding affinities for an arbitrary molecule is still beyond the limits of current methods, the docking and screening procedures can select small sets of likely lead candidates from large libraries of either commercially or synthetically available compounds.
引用
收藏
页码:375 / 382
页数:8
相关论文
共 50 条
  • [31] Enrichment of high-throughput docking results using Naive Bayes.
    Klon, AE
    Glick, M
    Thoma, M
    Acklin, P
    Davies, JW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U446 - U446
  • [32] METADOCK 2: a high-throughput parallel metaheuristic scheme for molecular docking
    Imbernon, Baldomero
    Serrano, Antonio
    Bueno-Crespo, Andres
    Abellan, Jose L.
    Perez-Sanchez, Horacio
    Cecilia, Jose M.
    BIOINFORMATICS, 2021, 37 (11) : 1515 - 1520
  • [33] Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations
    Souza, Paulo C. T.
    Limongelli, Vittorio
    Wu, Sangwook
    Marrink, Siewert J.
    Monticelli, Luca
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [34] Understanding the I/O Impact on the Performance of High-Throughput Molecular Docking
    Markidis, Stefano
    Gadioli, Davide
    Vitali, Emanuele
    Palermo, Gianluca
    PROCEEDINGS OF IEEE/ACM SIXTH INTERNATIONAL PARALLEL DATA SYSTEMS WORKSHOP (PDSW 2021), 2021, : 9 - 14
  • [35] Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking
    Schapira, M
    Raaka, BM
    Das, S
    Fan, L
    Totrov, M
    Zhou, ZG
    Wilson, SR
    Abagyan, R
    Samuels, HH
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) : 7354 - 7359
  • [36] Interplay of docking, pharmacophores, and shape in virtual high-throughput screening.
    Evensen, E
    Purkey, HE
    Lind, KE
    Bradley, EK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U368 - U368
  • [37] High-Throughput Next-Generation Sequencing of Polioviruses
    Montmayeur, Anna M.
    Ng, Terry Fei Fan
    Schmidt, Alexander
    Zhao, Kun
    Magana, Laura
    Iber, Jane
    Castro, Christina J.
    Chen, Qi
    Henderson, Elizabeth
    Ramos, Edward
    Shaw, Jing
    Tatusov, Roman L.
    Dybdahl-Sissoko, Naomi
    Endegue-Zanga, Marie Claire
    Adeniji, Johnson A.
    Oberste, M. Steven
    Burns, Cara C.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2017, 55 (02) : 606 - 615
  • [38] High-throughput sequencing, information generation, and the future of biology
    Venter, JC
    FIREPOWER IN THE LAB: AUTOMATION IN THE FIGHT AGAINST INFECTIOUS DISEASES AND BIOTERRORISM, 2001, : 261 - 266
  • [39] High-throughput screening system for generation of fluorescent indicators
    Takikawa, Kenji
    Iinuma, Sho
    Namiki, Shigeyuki
    Sakamoto, Hirokazu
    Hirose, Kenzo
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2010, 112 : 232P - 232P
  • [40] High-Throughput Microdissection for Next-Generation Sequencing
    Rosenberg, Avi Z.
    Armani, Michael D.
    Fetsch, Patricia A.
    Xi, Liqiang
    Tina Thu Pham
    Raffeld, Mark
    Chen, Yun
    O'Flaherty, Neil
    Stussman, Rebecca
    Blackler, Adele R.
    Du, Qiang
    Hanson, Jeffrey C.
    Roth, Mark J.
    Filie, Armando C.
    Roh, Michael H.
    Emmert-Buck, Michael R.
    Hipp, Jason D.
    Tangrea, Michael A.
    PLOS ONE, 2016, 11 (03):