An enhanced honey badger algorithm based on Levy flight and refraction opposition-based learning for engineering design problems

被引:15
|
作者
Xiao, Yaning [1 ]
Sun, Xue [1 ]
Guo, Yanling [1 ]
Cui, Hao [1 ]
Wang, Yangwei [1 ]
Li, Jian [1 ]
Li, Sanping [1 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Honey badger algorithm; highly disruptive polynomial mutation; Levy flight; refraction opposition-based learning; engineering design problems; HARRIS HAWKS OPTIMIZATION; SLIME-MOLD ALGORITHM; COMPUTATIONAL INTELLIGENCE; DIFFERENTIAL EVOLUTION; SEARCH;
D O I
10.3233/JIFS-213206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Honey badger algorithm (HBA) is a recently developed meta-heuristic algorithm, which mainly simulates the dynamic search behavior of honey badger in wild nature. Similar to other basic algorithms, HBA may suffer from the weakness of poor convergence accuracy, inadequate balance between exploration and exploitation, and ease of getting trapped into the local optima. In order to address these drawbacks, this paper proposes an enhanced honey badger algorithm (EHBA) to improve the search quality of the basic method from three aspects. First, we introduce the highly disruptive polynomial mutation to initialize the population. This is considered from increasing the population diversity. Second, Levy flight is integrated into the position update formula to boost search efficiency and balance exploration and exploitation capabilities of the algorithm. Furthermore, the refraction opposition-based learning is applied to the current global optimum of the swarm to help the population jump out of the local optima. To validate the function optimization performance, the proposed EHBA is comprehensively analyzed on 18 standard benchmark functions and IEEE CEC2017 test suite. Compared with the basic HBA and seven state-of-the-art algorithms, the experimental results demonstrate that EHBA can outperform other competitors on most of the test functions with superior solution accuracy, local optima avoidance, and stability. Additionally, the applicability of the proposed method is further highlighted by solving four engineering design problems. The results indicate that EHBA also has competitive performance and promising prospects for real-world optimization tasks.
引用
收藏
页码:4517 / 4540
页数:24
相关论文
共 50 条
  • [31] Enhanced social emotional optimisation algorithm with generalised opposition-based learning
    Guo, Zhaolu
    Yue, Xuezhi
    Zhang, Kejun
    Deng, Changshou
    Liu, Songhua
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 59 - 68
  • [32] An Improved Golden Jackal Optimization Algorithm Using Opposition-Based Learning for Global Optimization and Engineering Problems
    Mohapatra, Sarada
    Mohapatra, Prabhujit
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [33] Centroid opposition-based backtracking search algorithm for global optimization and engineering problems
    Debnath, Sanjib
    Debbarma, Swapan
    Nama, Sukanta
    Saha, Apu Kumar
    Dhar, Runu
    Yildiz, Ali Riza
    Gandomi, Amir H.
    ADVANCES IN ENGINEERING SOFTWARE, 2024, 198
  • [34] Improved Slime Mold Algorithm with Dynamic Quantum Rotation Gate and Opposition-Based Learning for Global Optimization and Engineering Design Problems
    Zhang, Yunyang
    Du, Shiyu
    Zhang, Quan
    ALGORITHMS, 2022, 15 (09)
  • [35] An Improved Golden Jackal Optimization Algorithm Using Opposition-Based Learning for Global Optimization and Engineering Problems
    Sarada Mohapatra
    Prabhujit Mohapatra
    International Journal of Computational Intelligence Systems, 16
  • [36] Opposition-based learning equilibrium optimizer with Levy flight and evolutionary population dynamics for high-dimensional global optimization problems
    Zhong, Changting
    Li, Gang
    Meng, Zeng
    He, Wanxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [37] A Hybrid SSA and SMA with Mutation Opposition-Based Learning for Constrained Engineering Problems
    Wang S.
    Liu Q.
    Liu Y.
    Jia H.
    Abualigah L.
    Zheng R.
    Wu D.
    Computational Intelligence and Neuroscience, 2021, 2021
  • [38] Opposition-Based Cuckoo Search Algorithm for Optimization Problems
    Zhao, Pengjun
    Li, Huirong
    2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 1, 2012, : 344 - 347
  • [39] Opposition-Based Artificial Hummingbird Algorithm Applied to Elementary Machine Design Problems
    Bhattacharjee V.
    Roy P.K.
    Chattoraj C.
    SN Computer Science, 5 (1)
  • [40] Hybrid Sine Cosine Algorithm with Integrated Roulette Wheel Selection and Opposition-Based Learning for Engineering Optimization Problems
    Vu Hong Son Pham
    Nghiep Trinh Nguyen Dang
    Van Nam Nguyen
    International Journal of Computational Intelligence Systems, 16