A DMRG study of the q-symmetric Heisenberg chain

被引:0
|
作者
Kaulke, M [1 ]
Peschel, I [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 1998年 / 5卷 / 03期
关键词
D O I
10.1007/s100510050496
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The spin one-half Heisenberg chain with U-q[SU(2)] symmetry is studied via density-matrix renormalization. Ground-state energy and q-symmetric correlation functions are calculated for the non-Hermitian case q = exp(i pi(r+1)) with integer r. This gives bulk and surface exponents for (para)fermionic correlations in the related Ising and Potts models. The case of real q corresponding to a diffusion problem is treated analytically.
引用
收藏
页码:727 / 734
页数:8
相关论文
共 50 条
  • [21] Hyper generalized pseudo Q-symmetric semi-Riemannian manifolds
    Blaga, Adara M.
    Bakshi, Manoj Ray
    Baishya, Kanak Kanti
    CUBO-A MATHEMATICAL JOURNAL, 2021, 23 (01): : 87 - 96
  • [22] Two-parameter deformed multimode oscillators and q-symmetric states
    Chung, WS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : 353 - 359
  • [23] Stochastic approximation of eigenvectors and eigenvalues of the Q-Symmetric expectation of a random matrix
    Monnez, Jean-Marie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (05) : 1669 - 1683
  • [24] Inclusion and Neighborhood on a Multivalent q-Symmetric Function with Poisson Distribution Operators
    Amini, Ebrahim
    Al-Omari, Shrideh
    Suthar, Dayalal
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [25] Q-DEFORMATIONS OF THE O(3) SYMMETRIC SPIN-1 HEISENBERG CHAIN
    BATCHELOR, MT
    MEZINCESCU, L
    NEPOMECHIE, RI
    RITTENBERG, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04): : L141 - L144
  • [26] Alternate transition matrices for Brenti's q-symmetric functions and a class of (q, t)-symmetric functions on the hyperoctahedral group
    Langley, TM
    DISCRETE MATHEMATICS, 2005, 298 (1-3) : 230 - 284
  • [27] Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model
    He, Yin-Chen
    Zaletel, Michael P.
    Oshikawa, Masaki
    Pollmann, Frank
    PHYSICAL REVIEW X, 2017, 7 (03):
  • [28] Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus
    Khan, Mohammad Faisal
    Goswami, Anjali
    Khan, Shahid
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [29] Quantum anisotropic Heisenberg chains with superlattice structure: A DMRG study
    Silva-Valencia, J
    Xavier, JC
    Miranda, E
    PHYSICAL REVIEW B, 2005, 71 (02)
  • [30] Some q-Symmetric Integral Inequalities Involving s-Convex Functions
    Nosheen, Ammara
    Ijaz, Sana
    Khan, Khuram Ali
    Awan, Khalid Mahmood
    Albahar, Marwan Ali
    Thanoon, Mohammed
    SYMMETRY-BASEL, 2023, 15 (06):