A DMRG study of the q-symmetric Heisenberg chain

被引:0
|
作者
Kaulke, M [1 ]
Peschel, I [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 1998年 / 5卷 / 03期
关键词
D O I
10.1007/s100510050496
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The spin one-half Heisenberg chain with U-q[SU(2)] symmetry is studied via density-matrix renormalization. Ground-state energy and q-symmetric correlation functions are calculated for the non-Hermitian case q = exp(i pi(r+1)) with integer r. This gives bulk and surface exponents for (para)fermionic correlations in the related Ising and Potts models. The case of real q corresponding to a diffusion problem is treated analytically.
引用
收藏
页码:727 / 734
页数:8
相关论文
共 50 条
  • [1] Certain fractional q-symmetric integrals and q-symmetric derivatives and their application
    Mingzhe Sun
    Yuanfeng Jin
    Chengmin Hou
    Advances in Difference Equations, 2016
  • [2] Certain fractional q-symmetric integrals and q-symmetric derivatives and their application
    Sun, Mingzhe
    Jin, Yuanfeng
    Hou, Chengmin
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [3] Nonlocal q-Symmetric Integral Boundary Value Problem for Sequential q-Symmetric Integrodifference Equations
    Ouncharoen, Rujira
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    MATHEMATICS, 2018, 6 (11):
  • [4] On Pseudo Q-symmetric spacetimes
    Mallick, Sahanous
    Chand, De Uday
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (03) : 1333 - 1345
  • [5] On Pseudo Q-symmetric spacetimes
    Sahanous Mallick
    Uday Chand De
    Analysis and Mathematical Physics, 2019, 9 : 1333 - 1345
  • [6] The q-symmetric variational calculus
    Brito da Cruz, Artur M. C.
    Martins, Natalia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2241 - 2250
  • [7] On q-symmetric functions and q-quasisymmetric functions
    Li, Yunnan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 323 - 364
  • [8] On q-symmetric functions and q-quasisymmetric functions
    Yunnan Li
    Journal of Algebraic Combinatorics, 2015, 41 : 323 - 364
  • [9] Fractional q-symmetric calculus on a time scale
    Mingzhe Sun
    Chengmin Hou
    Advances in Difference Equations, 2017
  • [10] Fractional q-symmetric calculus on a time scale
    Sun, Mingzhe
    Hou, Chengmin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,