Fast relative newton algorithm for blind deconvolution of images

被引:0
|
作者
Bronstein, AM [1 ]
Zibulevsky, M [1 ]
Zeevi, YY [1 ]
Bronstein, MM [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an efficient Newton-like algorithm for quasi-maximum likelihood (QML) blind deconvolution of images. This algorithm exploits the sparse structure of the Hessian. An optirnal distribution-shaping approach by means ofsparsification allows one to use simple and convenient sparsity prior for processing of a wide range of natural images. Simulation results demonstrate the efficiency of the proposed method.
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 50 条
  • [41] Fast Joint Blind Source Separation for Multiple Datasets Using Decoupled Relative Newton Approach
    Li, Jiong
    Zhang, Hang
    Ding, Wenchun
    Wang, Pengfei
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2311 - 2314
  • [42] Blind Poissonian images deconvolution with framelet regularization
    Fang, Houzhang
    Yan, Luxin
    Liu, Hai
    Chang, Yi
    OPTICS LETTERS, 2013, 38 (04) : 389 - 391
  • [43] Multichannel blind deconvolution of spatially misaligned images
    Sroubek, F
    Flusser, J
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (07) : 874 - 883
  • [44] Optimal sparse representations for blind deconvolution of images
    Bronstein, AM
    Bronstein, MM
    Zibulevsky, M
    Zeevi, YY
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 500 - 507
  • [45] Iterative blind deconvolution of adaptive optics images
    梁莹
    饶长辉
    李梅
    耿则勋
    ChineseOpticsLetters, 2006, (04) : 187 - 188
  • [46] BLIND DECONVOLUTION OF FUNDAMENTAL AND HARMONIC ULTRASOUND IMAGES
    Hourani, Mohamad
    Basarab, Adrian
    Michailovich, Oleg
    Matrone, Giulia
    Ramalli, Alessandro
    Kouame, Denis
    Tourneret, Jean-Yves
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 854 - 857
  • [47] BLIND DECONVOLUTION OF IMAGES BY USE OF NEURAL NETWORKS
    STERITI, RJ
    FIDDY, MA
    OPTICS LETTERS, 1994, 19 (08) : 575 - 577
  • [48] Blind deconvolution of images blurred by atmospheric speckle
    Leung, WYV
    Lane, RG
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA, 2000, 4123 : 73 - 83
  • [49] Blind deconvolution of blurred images by use of ICA
    Umeyama, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2001, 84 (12): : 1 - 9
  • [50] Fast Blind Deconvolution with Simple Machine Learning
    Takeshi, Nagata
    PROCEEDINGS OF THE SEVENTH ASIA INTERNATIONAL SYMPOSIUM ON MECHATRONICS, VOL II, 2020, 589 : 967 - 975