Extreme Eigenvalue Distributions of Finite Random Wishart Matrices with Application to Spectrum Sensing

被引:0
|
作者
Abreu, Giuseppe [1 ]
Zhang, Wensheng [2 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, Germany Campus Ring 1, D-28759 Bremen, Germany
[2] Keio Univ, Dept Elect & Elect Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
SAMPLE COVARIANCE MATRICES; FADING CHANNELS; CAPACITY; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We employ a unified framework to express the exact cumulative distribution functions (CDF's) and probability density functions (PDF's) of both the largest and smallest eigenvalues of central uncorrelated complex random Wishart matrices of arbitrary (finite) size. The resulting extreme eigenvalue distributions, which are put in simple closed-forms, are then applied to build a Hypothesis-Test to solve the Primary User (PU) detection problem (aka Spectrum Sensing), relevant to Cognitive Radio (CR) applications. The proposed scheme is shown to outperform all asymptotic approaches recently proposed, as consequence of the fact that the distributions of the extreme eigenvalues are closed-form and exact, for any given matrix size.
引用
收藏
页码:1731 / 1736
页数:6
相关论文
共 50 条
  • [31] The smallest eigenvalue distribution at the spectrum edge of random matrices
    Nagao, T
    Forrester, PJ
    NUCLEAR PHYSICS B, 1998, 509 (03) : 561 - 598
  • [32] Covariance Based Spectrum Sensing with Studentized Extreme Eigenvalue
    Ciflikli, Cebrail
    Ilgin, Fatih Yavuz
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (01): : 100 - 106
  • [33] Random matrices with row constraints and eigenvalue distributions of graph Laplacians
    Akara-pipattana, Pawat
    Evnin, Oleg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (29)
  • [34] Standard Condition Number Distributions of Finite Wishart Matrices for Cognitive Radio Networks
    Zhang, Wensheng
    Wang, Jiajia
    Sun, Jian
    Wang, Cheng-Xiang
    Ge, Xiaohu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (05) : 4630 - 4634
  • [35] Eigenvalue Distributions of Wishart-Type Random Matrices and Error Probability Analysis of Dual Maximum-Ratio Transmission in Semicorrelated Rayleigh Fading
    Maaref, Amine
    Aissa, Sonia
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 4130 - 4136
  • [36] MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices
    Jin, Shi
    Mckay, Matthew R.
    Gao, Xiqi
    Collings, Iain B.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (03) : 424 - 434
  • [37] Eigenvalue Distributions in Random Confusion Matrices: Applications to Machine Learning Evaluation
    Olaniran, Oyebayo Ridwan
    Alzahrani, Ali Rashash R.
    Alzahrani, Mohammed R.
    MATHEMATICS, 2024, 12 (10)
  • [38] Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices
    Capitaine, M
    Casalis, M
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) : 397 - 431
  • [39] Distributions of the extreme eigenvalues of beta-Jacobi random matrices
    Dumitriu, Ioana
    Koev, Plamen
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 1 - 6
  • [40] The largest eigenvalue characteristic of correlated complex Wishart matrices and its application to MIMO MRC systems
    Rui, Xianyi
    Hong, Rong
    Geng, Junping
    Huang, Xiaojing
    2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 375 - +