Extracting Events from Spatial Time Series

被引:12
|
作者
Andrienko, Gennady [1 ]
Andrienko, Natalia
Mladenov, Martin
Mock, Michael
Poelitz, Christian
机构
[1] Fraunhofer IAIS, St Augustin, Germany
来源
2010 14TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2010) | 2010年
关键词
visual analytics; event detection; time series;
D O I
10.1109/IV.2010.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
C An important task in exploration of data about phenomena and processes that develop over time is detection of significant changes that happened to the studied phenomenon. Our research is focused on supporting detection of significant changes, called events, in multiple time series of numeric values. We developed a suite of visual analytics techniques that combines interactive visualizations on time-aware displays and maps with statistical event detection methods implemented in R. We demonstrate the utility of our approach using two large data sets.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [41] EDISA: extracting biclusters from multiple time-series of gene expression profiles
    Supper, Jochen
    Strauch, Martin
    Wanke, Dierk
    Harter, Klaus
    Zell, Andreas
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [42] Optimization of Representation for Extracting Knowledge from Ultra-High Frequency Time Series
    Lipinski, Piotr
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 2759 - 2766
  • [43] Extracting deforming landslides from time-series Sentinel-2 imagery
    Zhang, Dingwen
    Yang, Wentao
    Xu, Chong
    Ye, Tao
    Liu, Qiwei
    LANDSLIDES, 2022, 19 (11) : 2761 - 2774
  • [44] Extracting biologically significant patterns from short time series gene expression data
    Alain B Tchagang
    Kevin V Bui
    Thomas McGinnis
    Panayiotis V Benos
    BMC Bioinformatics, 10
  • [45] Extracting Events and Temporal Expressions from Text
    UzZaman, Naushad
    Allen, James F.
    2010 IEEE FOURTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2010), 2010, : 1 - 8
  • [46] Extracting dynamical information about protein folding from time series analysis.
    Kostov, K
    Toda, M
    Matsunaga, Y
    Komatsuzaki, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U427 - U427
  • [47] Extracting deforming landslides from time-series Sentinel-2 imagery
    Dingwen Zhang
    Wentao Yang
    Chong Xu
    Tao Ye
    Qiwei Liu
    Landslides, 2022, 19 : 2761 - 2774
  • [48] Extracting oscillating components from nonstationary time series: A wavelet-induced method
    Deliege, Adrien
    Nicolay, Samuel
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [49] Extracting Low-Dimensional Latent Structure from Time Series in the Presence of Delays
    Lakshmanan, Karthik C.
    Sadtler, Patrick T.
    Tyler-Kabara, Elizabeth C.
    Batista, Aaron P.
    Yu, Byron M.
    NEURAL COMPUTATION, 2015, 27 (09) : 1825 - 1856
  • [50] Extracting multilayer networks from Sentinel-2 satellite image time series
    Interdonato, Roberto
    Gaetano, Raffaele
    Lo Seen, Danny
    Roche, Mathieu
    Scarpa, Giuseppe
    NETWORK SCIENCE, 2020, 8 : S26 - S42