Superposition modulo a Shostak theory

被引:0
|
作者
Ganzinger, H [1 ]
Hillenbrand, T [1 ]
Waldmann, U [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate superposition modulo a Shostak theory T in order to facilitate reasoning in the amalgamation of T and a free theory F. Free operators occur naturally for instance in program verification problems when abstracting over subroutines. If their behaviour in addition can be specified axiomatically, much more of the program semantics can be captured. Combining the Shostak-style components for deciding the clausal validity problem with the ordering and saturation techniques developed for equational reasoning, we derive a refutationally complete calculus on mixed ground clauses which result for example from CNF transforming arbitrary universally quantified formulae. The calculus works modulo a Shostak theory in the sense that it operates on canonizer normalforms. For the Shostak solvers that we study, coherence comes for free: no coherence pairs need to be considered.
引用
收藏
页码:182 / 196
页数:15
相关论文
共 50 条
  • [21] CHEER FOR SHOSTAK
    ABRELL, R
    PHI DELTA KAPPAN, 1979, 60 (06) : 475 - 475
  • [22] Unification modulo a partial theory of exponentiation
    Kapur, Deepak
    Marshall, Andrew
    Narendran, Paliath
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (42): : 12 - 23
  • [23] Satisfiability modulo theory and binary puzzle
    Utomo, Putranto
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [24] THE PRINCIPLE OF SUPERPOSITION AND THE THEORY OF DISPERSION
    SIVUKHIN, DV
    OPTIKA I SPEKTROSKOPIYA, 1957, 3 (04): : 297 - 307
  • [25] The superposition principle in quantum theory
    Lunin, NV
    DOKLADY AKADEMII NAUK, 1999, 368 (03) : 323 - 327
  • [26] PRINCIPLE OF SUPERPOSITION AND DIRACHESTENES THEORY
    CASANOVA, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (07): : 437 - &
  • [27] THE SUPERPOSITION OF CONFIGURATIONS IN THE THEORY OF SCREENING
    VINOGRADOV, AV
    SAFRONOVA, UI
    OPTIKA I SPEKTROSKOPIYA, 1983, 54 (05): : 881 - 882
  • [28] SUPERPOSITION THEORY FOR PHOTON FIELDS
    WEBBER, JC
    PHYSICAL REVIEW, 1969, 183 (05): : 1108 - &
  • [29] Combining Shostak theories
    Shankar, N
    Ruess, H
    REWRITING TECHNIQUES AND APPLICATIONS, 2002, 2378 : 1 - 18
  • [30] The Modulo Radon Transform: Theory, Algorithms, and Applications
    Beckmann, Matthias
    Bhandari, Ayush
    Krahmer, Felix
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (02): : 455 - 490