Superposition modulo a Shostak theory

被引:0
|
作者
Ganzinger, H [1 ]
Hillenbrand, T [1 ]
Waldmann, U [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate superposition modulo a Shostak theory T in order to facilitate reasoning in the amalgamation of T and a free theory F. Free operators occur naturally for instance in program verification problems when abstracting over subroutines. If their behaviour in addition can be specified axiomatically, much more of the program semantics can be captured. Combining the Shostak-style components for deciding the clausal validity problem with the ordering and saturation techniques developed for equational reasoning, we derive a refutationally complete calculus on mixed ground clauses which result for example from CNF transforming arbitrary universally quantified formulae. The calculus works modulo a Shostak theory in the sense that it operates on canonizer normalforms. For the Shostak solvers that we study, coherence comes for free: no coherence pairs need to be considered.
引用
收藏
页码:182 / 196
页数:15
相关论文
共 50 条
  • [1] Canonized Rewriting and Ground AC Completion Modulo Shostak Theories
    Conchon, Sylvain
    Contejean, Evelyne
    Iguernelala, Mohamed
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2011, 6605 : 45 - +
  • [2] CANONIZED REWRITING AND GROUND AC COMPLETION MODULO SHOSTAK THEORIES: DESIGN AND IMPLEMENTATION
    Conchon, Sylvain
    Contejean, Evelyne
    Iguernelala, Mohamed
    LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (03)
  • [3] SMELS: Satisfiability Modulo Equality with Lazy Superposition
    Christopher Lynch
    Quang-Trung Ta
    Duc-Khanh Tran
    Journal of Automated Reasoning, 2013, 51 : 325 - 356
  • [4] SMELS: Satisfiability Modulo Equality with Lazy Superposition
    Lynch, Christopher
    Quang-Trung Ta
    Duc-Khanh Tran
    JOURNAL OF AUTOMATED REASONING, 2013, 51 (03) : 325 - 356
  • [5] Superposition Modulo Non-linear Arithmetic
    Eggers, Andreas
    Kruglov, Evgeny
    Kupferschmid, Stefan
    Scheibler, Karsten
    Teige, Tino
    Weidenbach, Christoph
    FRONTIERS OF COMBINING SYSTEMS, 2011, 6989 : 119 - +
  • [6] SMELS: Satisfiability Modulo Equality with Lazy Superposition
    Lynch, Christopher
    Tran, Duc-Khanh
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2008, 5311 : 186 - +
  • [7] Superposition Modulo Linear Arithmetic SUP(LA)
    Althaus, Ernst
    Kruglov, Evgeny
    Weidenbach, Christoph
    FRONTIERS OF COMBINING SYSTEMS, PROCEEDINGS, 2009, 5749 : 84 - 99
  • [8] Modular Termination and Combinability for Superposition Modulo Counter Arithmetic
    Ringeissen, Christophe
    Senni, Valerio
    FRONTIERS OF COMBINING SYSTEMS, 2011, 6989 : 211 - 226
  • [9] Arithmetic as a theory modulo
    Dowek, G
    Werner, B
    TERM REWRITING AND APPLICATIONS, PROCEEDINGS, 2005, 3467 : 423 - 437
  • [10] Coq Modulo Theory
    Strub, Pierre-Yves
    COMPUTER SCIENCE LOGIC, 2010, 6247 : 529 - 543