Ballistic behavior of multiwalled carbon nanotube-reinforced toughened polycarbonate nanocomposites

被引:10
|
作者
Bagotia, Nisha [1 ]
Sharma, Durlubh Kumar [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Energy Studies, New Delhi 110016, India
关键词
dynamic impact strength; multiwalled carbon nanotubes; polycarbonate; ethylene methyl acrylate blend; stress-strain properties; MECHANICAL-PROPERTIES; STRAIN; COMPOSITES;
D O I
10.1002/pc.25499
中图分类号
TB33 [复合材料];
学科分类号
摘要
The overall goal of this research is to develop a material that is able to absorb mechanical shocks. Polycarbonate/ethylene methyl acrylate-multiwalled carbon nanotube (PC/EMA-MWCNTs) nanocomposites have been prepared using the melt-blending method using a micro compounder, and their dynamic impact behavior has been studied. A Split Hopkinson pressure bar instrument has been used for dynamic impact testing of the nanocomposite samples. The impact tests were performed under varying strain rates ranging from 100 to 10 000 seconds(-1). The present study reports the stress-strain properties of PC/EMA-MWCNTs nanocomposites under a high strain rate. Stress tolerance of these nanocomposites was studied to analyze the effectiveness of small amounts of carbon nanotubes for impact/stress absorption in comparison to pure polycarbonate (PC) and polycarbonate/ethylene methyl acrylate [PC/EMA (95/5 wt/wt)] blend samples. It is found that, at concentration levels of 5 phr of MWCNTs, the impact absorption of composites sample increased by 130% and 76% compared to pure PC and PC/EMA (95/5 wt/wt) blend, respectively.
引用
收藏
页码:1813 / 1819
页数:7
相关论文
共 50 条
  • [21] Electrical and rheological percolation behavior of multiwalled carbon nanotube-reinforced poly(phenylene sulfide) composites
    Ribeiro, B.
    Pipes, R. B.
    Costa, M. L.
    Botelho, E. C.
    JOURNAL OF COMPOSITE MATERIALS, 2017, 51 (02) : 199 - 208
  • [22] Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
    Cheng, Qunfeng
    Wang, Jiaping
    Jiang, Kaili
    Li, Qunqing
    Fan, Shoushan
    JOURNAL OF MATERIALS RESEARCH, 2008, 23 (11) : 2975 - 2983
  • [23] Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites
    Ansari, R.
    Hassanzadeh-Aghdarn, M. K.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 115 : 45 - 55
  • [24] Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites
    Satapathy, BK
    Weidisch, R
    Pötschke, P
    Janke, A
    MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (15) : 1246 - 1252
  • [25] Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
    Qunfeng Cheng
    Jiaping Wang
    Kaili Jiang
    Qunqing Li
    Shoushan Fan
    Journal of Materials Research, 2008, 23 : 2975 - 2983
  • [26] Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites
    Li, Y.
    Liu, S.
    Hu, N.
    Han, X.
    Zhou, L.
    Ning, H.
    Wu, L.
    Alamusi
    Yamamoto, G.
    Chang, C.
    Hashida, T.
    Atobe, S.
    Fukunaga, H.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [27] Metallurgical Challenges in Carbon Nanotube-Reinforced Metal Matrix Nanocomposites
    Azarniya, Abolfazl
    Safavi, Mir Saman
    Sovizi, Saeed
    Azarniya, Amir
    Chen, Biao
    Hosseini, Hamid Reza Madaah
    Ramakrishna, Seeram
    METALS, 2017, 7 (10):
  • [28] Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites
    Kim, Jun Young
    MATERIALS, 2009, 2 (04) : 1955 - 1974
  • [29] Carbon Nanotube-reinforced Epoxy Nanocomposites for Mechanical Property Improvement
    Mao, Dongsheng
    Yaniv, Zvi
    Fink, Richard
    Johnson, Lauren
    NANOTECH CONFERENCE & EXPO 2009, VOL 3, TECHNICAL PROCEEDINGS: NANOTECHNOLOGY 2009: BIOFUELS, RENEWABLE ENERGY, COATINGS FLUIDICS AND COMPACT MODELING, 2009, : 461 - 464
  • [30] Modeling the Interphase Region in Carbon Nanotube-Reinforced Polymer Nanocomposites
    Amraei, Jafar
    Jam, Jafar E.
    Arab, Behrouz
    Firouz-Abadi, Roohollah D.
    POLYMER COMPOSITES, 2019, 40 (S2) : E1219 - E1234