Exploiting robust unsupervised video person re-identification

被引:4
|
作者
Zang, Xianghao [1 ]
Li, Ge [1 ]
Gao, Wei [1 ]
Shu, Xiujun [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
[2] Res Ctr Artificial Intelligence, Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Benchmarking;
D O I
10.1049/ipr2.12380
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised video person re-identification (reID) methods usually depend on global-level features. Many supervised reID methods employed local-level features and achieved significant performance improvements. However, applying local-level features to unsupervised methods may introduce an unstable performance. To improve the performance stability for unsupervised video reID, this paper introduces a general scheme fusing part models and unsupervised learning. In this scheme, the global-level feature is divided into equal local-level feature. A local-aware module is employed to explore the potentials of local-level feature for unsupervised learning. A global-aware module is proposed to overcome the disadvantages of local-level features. Features from these two modules are fused to form a robust feature representation for each input image. This feature representation has the advantages of local-level feature without suffering from its disadvantages. Comprehensive experiments are conducted on three benchmarks, including PRID2011, iLIDS-VID, and DukeMTMC-VideoReID, and the results demonstrate that the proposed approach achieves state-of-the-art performance. Extensive ablation studies demonstrate the effectiveness and robustness of proposed scheme, local-aware module and global-aware module. The code and generated features are available at .
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [31] Uncertainty-guided Robust labels refinement for unsupervised person re-identification
    Chengjun Wang
    Jinjia Peng
    Zeze Tao
    Huibing Wang
    Neural Computing and Applications, 2024, 36 : 977 - 991
  • [32] Robust Video-Based Person Re-Identification by Hierarchical Mining
    Wang, Zhikang
    He, Lihuo
    Tu, Xiaoguang
    Zhao, Jian
    Gao, Xinbo
    Shen, Shengmei
    Feng, Jiashi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8179 - 8191
  • [33] Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
    Li, Yongxiang
    Sun, Yuan
    Qin, Yang
    Peng, Dezhong
    Peng, Xi
    Hu, Peng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1937 - 1948
  • [34] Leveraging Virtual and Real Person for Unsupervised Person Re-Identification
    Yang, Fengxiang
    Zhong, Zhun
    Luo, Zhiming
    Lian, Sheng
    Li, Shaozi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (09) : 2444 - 2453
  • [35] Dynamic Hybrid Graph Matching for Unsupervised Video-based Person Re-identification
    Xu, Xiaoyue
    Chen, Ying
    Chen, Qiaoyuan
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (01)
  • [36] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [37] Rethinking Sampling Strategies for Unsupervised Person Re-Identification
    Han, Xumeng
    Yu, Xuehui
    Li, Guorong
    Zhao, Jian
    Pan, Gang
    Ye, Qixiang
    Jiao, Jianbin
    Han, Zhenjun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 29 - 42
  • [38] Unsupervised Person Re-identification by Soft Multilabel Learning
    Yu, Hong-Xing
    Zheng, Wei-Shi
    Wu, Ancong
    Guo, Xiaowei
    Gong, Shaogang
    Lai, Jian-Huang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2143 - 2152
  • [39] Adaptive Label Allocation for Unsupervised Person Re-Identification
    Song, Yihu
    Liu, Shuaishi
    Yu, Siyang
    Zhou, Siyu
    ELECTRONICS, 2022, 11 (05)
  • [40] Pseudo labels purification for unsupervised person Re-IDentification
    Sun, Haiming
    Gao, Yuan
    Ma, Shiwei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)