Optical Coherence Tomography for Three-Dimensional Imaging in the Biomedical Field: A Review

被引:22
|
作者
Zheng, Shu [1 ,2 ]
Bai, Yanru [1 ,2 ]
Xu, Zihao [1 ,2 ]
Liu, Pengfei [1 ,2 ]
Ni, Guangjian [1 ,3 ]
机构
[1] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin, Peoples R China
[2] Tianjin Key Lab Brain Sci & Neuroengn, Tianjin, Peoples R China
[3] Tianjin Univ, Coll Precis Instruments & Optoelect Engn, Dept Biomed Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
optical coherence tomography; noninvasive imaging; high-resolution; clinic application; hearing science; BASAL-CELL CARCINOMA; IN-VIVO; HIGH-SPEED; BLOOD-FLOW; BIOLOGICAL TISSUE; LIGHT-SOURCES; SWEPT-SOURCE; DOPPLER; ANGIOGRAPHY; ENDOSCOPE;
D O I
10.3389/fphy.2021.744346
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical coherence tomography (OCT) has become a novel approach to noninvasive imaging in the past three decades, bringing a significant potential to biological research and medical biopsy in situ, particularly in three-dimensional (3D) in vivo conditions. Specifically, OCT systems using broad bandwidth sources, mainly centered at near-infrared-II, allow significantly higher imaging depth, as well as maintain a high-resolution and better signal-to-noise ratio than the traditional microscope, which avoids the scattering blur and thus obtains more details from delicate biological structures not just limited to the surface. Furthermore, OCT systems combined the spectrometer with novel light sources, such as multiplexed superluminescent diodes or ultra-broadband supercontinuum laser sources, to obtain sub-micron resolution imaging with high-speed achieve widespread clinical applications. Besides improving OCT performance, the functional extensions of OCT with other designs and instrumentations, taking polarization state or birefringence into account, have further improved OCT properties and functions. We summarized the conventional principle of OCT systems, including time-domain OCT, Fourier-domain OCT, and several typical OCT extensions, compared their different components and properties, and analyzed factors that affect OCT performance. We also reviewed current applications of OCT in the biomedical field, especially in hearing science, discussed existing limitations and challenges, and looked forward to future development, which may provide a guideline for those with 3D in vivo imaging desires.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Three-dimensional optical coherence tomography of the murine embryo
    Luo, W
    Ralston, T
    Marks, DL
    Boppart, SA
    FASEB JOURNAL, 2005, 19 (04): : A798 - A798
  • [22] Three-dimensional endomicroscopy using optical coherence tomography
    Desmond C. Adler
    Yu Chen
    Robert Huber
    Joseph Schmitt
    James Connolly
    James G. Fujimoto
    Nature Photonics, 2007, 1 : 709 - 716
  • [23] Three-dimensional endomicroscopy using optical coherence tomography
    Adler, Desmond C.
    Chen, Yu
    Huber, Robert
    Schmitt, Joseph
    Connolly, James
    Fujimoto, James G.
    NATURE PHOTONICS, 2007, 1 (12) : 709 - 716
  • [24] Three-dimensional calibration targets for optical coherence tomography
    Sandrian, Michelle Gabriele
    Tomlins, Pete
    Woolliams, Peter
    Rasakanthan, Janarthanan
    Lee, Graham C. B.
    Yang, Anna
    Povazay, Boris
    Alex, Aneesh
    Sugden, Kate
    Drexler, Wolfgang
    OPTICAL DIAGNOSTICS AND SENSING XII: TOWARD POINT-OF-CARE DIAGNOSTICS AND DESIGN AND PERFORMANCE VALIDATION OF PHANTOMS USED IN CONJUNCTION WITH OPTICAL MEASUREMENT OF TISSUE IV, 2012, 8229
  • [25] Imaging of prostate micro-architecture using three-dimensional wide-field optical coherence tomography
    Skrok, Marta K.
    Tamborski, Szymon
    Hepburn, Matt S.
    Fang, Qi
    Maniewski, Mateusz
    Zdrenka, Marek
    Szkulmowski, Maciej
    Kowalewski, Adam
    Szylberg, Lukasz
    Kennedy, Brendan F.
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (12): : 6816 - 6833
  • [26] Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography
    Bezerra, Hiram G.
    Attizzani, Guilherme F.
    Costa, Marco A.
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2013, 81 (03) : 547 - 549
  • [27] THREE-DIMENSIONAL RECONSTRUCTION OF IMPLANTED CORONARY STENTS APPLYING OPTICAL COHERENCE TOMOGRAPHY IMAGING
    Bruining, Nico
    Sihan, Kenji
    de Winter, Sebastiaan
    Regar, Evelyn
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (13) : E157 - E157
  • [28] Three-dimensional ultrahigh-resolution optical coherence tomography imaging of lung tissues
    Ishida, S.
    Nishizawa, N.
    Kitatsuji, M.
    Ohshima, H.
    Matsushima, M.
    Kawabe, T.
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS IX, 2013, 8565
  • [29] Three-dimensional optical coherence tomography imaging of retinal sheet implants in live rats
    Seiler, Magdalene J.
    Rao, Bin
    Aramant, Robert B.
    Yu, Lingfeng
    Wang, Qiang
    Kitayama, Eric
    Pham, Sylvia
    Yan, Fengrong
    Chen, Zhongping
    Keirstead, Hans S.
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 188 (02) : 250 - 257