Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics

被引:40
|
作者
Zhang, Xiankun [1 ,2 ,3 ]
Kang, Zhuo [1 ,2 ,3 ]
Gao, Li [1 ,2 ]
Liu, Baishan [1 ,2 ]
Yu, Huihui [1 ,2 ]
Liao, Qingliang [1 ,2 ,3 ]
Zhang, Zheng [1 ,2 ,3 ]
Zhang, Yue [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Acad Adv Interdisciplinary Sci & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Key Lab Adv Energy Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
contact resistance; electronic devices; in situ defect healing; molecule treatment; Schottky barrier; van der Waals contacts; HIGH-PERFORMANCE WSE2; METAL CONTACTS; MONOLAYER MOS2; RESISTANCE; LAYER;
D O I
10.1002/adma.202104935
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The applications of any ultrathin semiconductor device are inseparable from high-quality metal-semiconductor contacts with designed Schottky barriers. Building van der Waals (vdWs) contacts of 2D semiconductors represents an advanced strategy of lowering the Schottky barrier height by reducing interface states, but will finally fail at the theoretical minimum barrier due to the inevitable energy difference between the semiconductor electron affinity and the metal work function. Here, an effective molecule optimization strategy is reported to upgrade the general vdWs contacts, achieving near-zero Schottky barriers and creating high-performance electronic devices. The molecule treatment can induce the defect healing effect in p-type semiconductors and further enhance the hole density, leading to an effectively thinned Schottky barrier width and improved carrier interface transmission efficiency. With an ultrathin Schottky barrier width of approximate to 2.17 nm and outstanding contact resistance of approximate to 9 k omega mu m in the optimized Au/WSe2 contacts, an ultrahigh field-effect mobility of approximate to 148 cm(2) V-1 s(-1) in chemical vapor deposition grown WSe2 flakes is achieved. Unlike conventional chemical treatments, this molecule upgradation strategy leaves no residue and displays a high-temperature stability at >200 degrees C. Furthermore, the Schottky barrier optimization is generalized to other metal-semiconductor contacts, including 1T-PtSe2/WSe2, 1T '-MoTe2/WSe2, 2H-NbS2/WSe2, and Au/PdSe2, defining a simple, universal, and scalable method to minimize contact resistance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Achieving nearly barrier free transport in high mobility ReS2 phototransistors with van der Waals contacts
    Mukherjee, Shubhrasish
    Samanta, Gaurab
    Hasan, Md Nur
    Moulick, Shubhadip
    Kulkarni, Ruta
    Watanabe, Kenji
    Taniguchi, Takashi
    Thamizhavel, Arumugum
    Karmakar, Debjani
    Pal, Atindra Nath
    NPJ 2D MATERIALS AND APPLICATIONS, 2024, 8 (01)
  • [22] Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures
    Xia, Congxin
    Xue, Bin
    Wang, Tianxing
    Peng, Yuting
    Jia, Yu
    APPLIED PHYSICS LETTERS, 2015, 107 (19)
  • [23] TiS3 sheet based van der Waals heterostructures with a tunable Schottky barrier
    Liu, Jie
    Guo, Yaguang
    Wang, Fancy Qian
    Wang, Qian
    NANOSCALE, 2018, 10 (02) : 807 - 815
  • [24] Electronic properties and controllable Schottky barrier of Janus HfSSe and graphene van der waals heterostructure
    Zhao, Xu
    Wang, Mengmeng
    Pei, Meng
    Xia, Congxin
    Wang, Tianxing
    Yang, Yanling
    Dai, Xianqi
    Wei, Shuyi
    SOLID STATE COMMUNICATIONS, 2022, 344
  • [25] van der Waals Heterostructure of Phosphorene and Graphene: Tuning the Schottky Barrier and Doping by Electrostatic Gating
    Padilha, J. E.
    Fazzio, A.
    da Silva, Antonio J. R.
    PHYSICAL REVIEW LETTERS, 2015, 114 (06)
  • [26] Schottky-barrier-free contacts with Janus WSSe 2D semiconductor using surface-engineered MXenes
    Huang, Sili
    Qian, Guolin
    Zhou, Luyu
    Luo, Xiangyan
    Xie, Quan
    SURFACES AND INTERFACES, 2024, 53
  • [27] Engineering van der Waals Contacts by Interlayer Dipoles
    Zhou, Zuoping
    Lin, Jun-Fa
    Zeng, Zimeng
    Ma, Xiaoping
    Liang, Liang
    Li, Yuheng
    Zhao, Zhongyuan
    Mei, Zhen
    Yang, Huaixin
    Li, Qunqing
    Wu, Jian
    Fan, Shoushan
    Chen, Xi
    Xia, Tian-Long
    Wei, Yang
    NANO LETTERS, 2024, 24 (15) : 4408 - 4414
  • [28] Van der Waals nanomesh electronics on arbitrary surfaces
    Meng, You
    Li, Xiaocui
    Kang, Xiaolin
    Li, Wanpeng
    Wang, Wei
    Lai, Zhengxun
    Wang, Weijun
    Quan, Quan
    Bu, Xiuming
    Yip, SenPo
    Xie, Pengshan
    Chen, Dong
    Li, Dengji
    Wang, Fei
    Yeung, Chi-Fung
    Lan, Changyong
    Liu, Chuntai
    Shen, Lifan
    Lu, Yang
    Chen, Furong
    Wong, Chun-Yuen
    Ho, Johnny C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [29] Van der Waals thin-film electronics
    Zhaoyang Lin
    Yu Huang
    Xiangfeng Duan
    Nature Electronics, 2019, 2 : 378 - 388
  • [30] Van der Waals nanomesh electronics on arbitrary surfaces
    You Meng
    Xiaocui Li
    Xiaolin Kang
    Wanpeng Li
    Wei Wang
    Zhengxun Lai
    Weijun Wang
    Quan Quan
    Xiuming Bu
    SenPo Yip
    Pengshan Xie
    Dong Chen
    Dengji Li
    Fei Wang
    Chi-Fung Yeung
    Changyong Lan
    Chuntai Liu
    Lifan Shen
    Yang Lu
    Furong Chen
    Chun-Yuen Wong
    Johnny C. Ho
    Nature Communications, 14