Homogenization and convergence of correctors in carnot groups

被引:14
|
作者
Franchi, B [1 ]
Gutiérrez, CE
Nguyen, TV
机构
[1] Univ Bologna, Dipartmento Matemat, Piazza Porta S Donato 5, I-40127 Bologna, Italy
[2] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
Carnot groups; correctors; homogenization;
D O I
10.1080/03605300500300014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider homogenization of differential operators of the form -Sigma(m)(i,j=1) X-i(a(ij)(delta(1/epsilon)(xi)) X(j)u(epsilon)) = f, where {X-j}(j=1)(m) is a family of linearly independent vector fields in R-N that by commutation generate the Lie algebra of a Carnot group, a(ij)(xi) are periodic functions in the sense of the group, and delta(1/epsilon) are the dilations in the group. We establish Meyers type estimates for the horizontal gradients Xu = (X(1)u,..., X(m)u) of solutions to equations defined with general vector fields satisfying Hormander's condition, and use them to prove convergence of the horizontal gradients of correctors in L2+theta, theta > 0.
引用
收藏
页码:1817 / 1841
页数:25
相关论文
共 50 条
  • [21] Invertible Carnot Groups
    Freeman, David M.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 248 - 257
  • [22] On the ∞-Laplacian on Carnot Groups
    Ferrari F.
    Forcillo N.
    Manfredi J.J.
    Journal of Mathematical Sciences, 2022, 268 (3) : 310 - 322
  • [23] Rearrangements in Carnot Groups
    Juan JMANFREDI
    Virginia NVERA DE SERIO
    Acta Mathematica Sinica, 2019, 35 (07) : 1115 - 1127
  • [24] Rearrangements in Carnot Groups
    Juan J.MANFREDI
    Virginia N.VERA DE SERIO
    Acta Mathematica Sinica,English Series, 2019, (07) : 1115 - 1127
  • [25] Rearrangements in Carnot Groups
    Juan J. Manfredi
    Virginia N. Vera de Serio
    Acta Mathematica Sinica, English Series, 2019, 35 : 1115 - 1127
  • [26] Homogenization and correctors of a class of elliptic problems in perforated domains
    Chourabi, Imen
    Donato, Patrizia
    ASYMPTOTIC ANALYSIS, 2015, 92 (1-2) : 1 - 43
  • [27] ASYMPTOTIC ANALYSIS OF BOUNDARY LAYER CORRECTORS IN PERIODIC HOMOGENIZATION
    Prange, Christophe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 345 - 387
  • [28] Homogenization and correctors for monotone problems in cylinders of small diameter
    Casado-Diaz, Juan
    Murat, Francois
    Sili, Ali
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (03): : 519 - 545
  • [29] On correctors for linear elliptic homogenization in the presence of local defects
    Blanc, X.
    Le Bris, C.
    Lions, P. -L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (06) : 965 - 997
  • [30] Periodic homogenization of geometric equations without perturbed correctors
    Jang, Jiwoong
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 3143 - 3180