Homogenization and convergence of correctors in carnot groups

被引:14
|
作者
Franchi, B [1 ]
Gutiérrez, CE
Nguyen, TV
机构
[1] Univ Bologna, Dipartmento Matemat, Piazza Porta S Donato 5, I-40127 Bologna, Italy
[2] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
Carnot groups; correctors; homogenization;
D O I
10.1080/03605300500300014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider homogenization of differential operators of the form -Sigma(m)(i,j=1) X-i(a(ij)(delta(1/epsilon)(xi)) X(j)u(epsilon)) = f, where {X-j}(j=1)(m) is a family of linearly independent vector fields in R-N that by commutation generate the Lie algebra of a Carnot group, a(ij)(xi) are periodic functions in the sense of the group, and delta(1/epsilon) are the dilations in the group. We establish Meyers type estimates for the horizontal gradients Xu = (X(1)u,..., X(m)u) of solutions to equations defined with general vector fields satisfying Hormander's condition, and use them to prove convergence of the horizontal gradients of correctors in L2+theta, theta > 0.
引用
收藏
页码:1817 / 1841
页数:25
相关论文
共 50 条