Automated segmentation of textured dust storms on mars remote sensing images using an encoder-decoder type convolutional neural network

被引:16
|
作者
Ogohara, Kazunori [1 ]
Gichu, Ryusei [2 ,3 ]
机构
[1] Kyoto Sangyo Univ, Fac Sci, Kita Ku, Kyoto 6038555, Japan
[2] Univ Shiga Prefecture, Grad Sch Engn, 2500 Hassaka, Hikone, Shiga, Japan
[3] DENSO Corp, Kariya, Aichi, Japan
关键词
Mars; Dust storm; Deep learning; Segmentation; Remote sensing; DEEP CONVECTION; CLOUDS;
D O I
10.1016/j.cageo.2022.105043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a method for detecting Martian dust storms and recognizing their size and shape on remote sensing images. The method is based on a convolutional neural network, one of algorithms that use deep learning for image categorization and recognition. We trained models with three different structures using images of two regions of Mars in visible wavelengths observed over several seasons, together with ground truth images manually prepared by the authors that give the true shapes of the dust storms. The two regions were the western Arcadia Planitia in the northern hemisphere and the Hellas Basin in the southern hemisphere, both of which are areas where high dust storm activity has been observed. The case study showed that models trained on images of the Arcadia Planitia tended to perform better than comparable models trained by images of the Hellas Basin. While third models trained by images of both regions showed little degradation relative to the dedicated models when tested on image of the Arcadia Planitia, their performances clearly decreased in the case of the Hellas Basin. Furthermore, the performance degradation was more pronounced for a model with moderate depth than for a deepest model. This is partially because the Hellas Basin is brighter than the adjacent areas throughout the year and high optical thickness of dust in its interior makes the textures of dust storms relatively unclear. In contrast, any models showed comparable performances in dust storm segmentation in the Arcadia Planitia and mixing data from the two regions with completely different surface patterns produced only a slight degradation of performance. It suggests that training the model with images from various regions may yield a regionindependent model that can be effectively applied to the segmentation of dust storms over a wide area.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Evaluation of different convolutional neural network encoder-decoder architectures for breast mass segmentation
    Isosalo, Antti
    Mustonen, Henrik
    Turunen, Topi
    Ipatti, Pieta S.
    Reponen, Jarmo
    Nieminen, Miika T.
    Inkinen, Satu I.
    MEDICAL IMAGING 2022: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2022, 12037
  • [22] Extracting Buildings from Remote Sensing Images Using a Multitask Encoder-Decoder Network with Boundary Refinement
    Xu, Hao
    Zhu, Panpan
    Luo, Xiaobo
    Xie, Tianshou
    Zhang, Liqiang
    REMOTE SENSING, 2022, 14 (03)
  • [23] A Semantic Segmentation Method for High-resolution Remote Sensing Images Based on Encoder-Decoder
    Yang, Jingyu
    Zhao, Liang
    Dang, Jianwu
    Wang, Yangping
    Yue, Biao
    Gu, Zongliang
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 98 - 103
  • [24] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [25] Semiautomated seismic horizon interpretation using the encoder-decoder convolutional neural network
    Wu, Hao
    Zhang, Bo
    Lin, Tengfei
    Cao, Danping
    Lou, Yihuai
    GEOPHYSICS, 2019, 84 (06) : B403 - B417
  • [26] Seismic Stratum Segmentation Using an Encoder–Decoder Convolutional Neural Network
    Detao Wang
    Guoxiong Chen
    Mathematical Geosciences, 2021, 53 : 1355 - 1374
  • [27] Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation
    Kim, Jung Uk
    Kim, Hak Gu
    Ro, Yong Man
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 685 - 688
  • [28] OverSegNet: A convolutional encoder-decoder network for image over-segmentation
    Li, Peng
    Ma, Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107
  • [29] Chest X-Ray Image Segmentation Using Encoder-Decoder Convolutional Network
    Saidy, Lamin
    Lee, Chien-Cheng
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), 2018,
  • [30] Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network
    Shahzad, Muhammad
    Umar, Arif Iqbal
    Shirazi, Syed Hamad
    Shaikh, Israr Ahmed
    IEEE ACCESS, 2021, 9 : 161326 - 161341