An effective integrated machine learning approach for detecting diabetic retinopathy

被引:2
|
作者
Pragathi, Penikalapati [1 ]
Rao, Agastyaraju Nagaraja [1 ]
机构
[1] Vellore Inst Technol VIT, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
来源
OPEN COMPUTER SCIENCE | 2022年 / 12卷 / 01期
关键词
diabetic retinopathy; support vector machine; machine learning; moth-flame optimization; classification; measures; principal component analysis; CLASSIFICATION; ALGORITHM;
D O I
10.1515/comp-2020-0222
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Millions of people across the world are suffering from diabetic retinopathy. This disease majorly affects the retina of the eye, and if not identified priorly causes permanent blindness. Hence, detecting diabetic retinopathy at an early stage is very important to safeguard people from blindness. Several machine learning (ML) algorithms are implemented on the dataset of diabetic retinopathy available in the UCI ML repository to detect the symptoms of diabetic retinopathy. But, most of those algorithms are implemented individually. Hence, this article proposes an effective integrated ML approach that uses the support vector machine (SVM), principal component analysis (PCA), and moth-flame optimization techniques. Initially, the ML algorithms decision tree (DT), SVM, random forest (RF), and Naive Bayes (NB) are applied to the diabetic retinopathy dataset. Among these, the SVM algorithm is outperformed with an average of 76.96% performance. Later, all the aforementioned ML algorithms are implemented by integrating the PCA technique to reduce the dimensions of the dataset. After integrating PCA, it is noticed that the performance of the algorithms NB, RF, and SVM is reduced dramatically; on the contrary, the performance of DT is increased. To improve the performance of ML algorithms, the moth-flame optimization technique is integrated with SVM and PCA. This proposed approach is outperformed with an average of 85.61% performance among all the other considered ML algorithms, and the classification of class labels is achieved correctly.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [31] Deep Machine Learning for OCTA Classification of Diabetic Retinopathy
    Le, David
    Alam, Minhaj Nur
    Lim, Jennifer I.
    Chan, Robison Vernon Paul
    Yao, Xincheng
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [32] Diabetic Retinopathy using Morphological Operations and Machine Learning
    Lachure, Jayakumar
    Deorankar, A. V.
    Lachure, Sagar
    Gupta, Swati
    Jadhav, Romit
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 617 - 622
  • [33] DREAM: Diabetic Retinopathy Analysis Using Machine Learning
    Roychowdhury, Sohini
    Koozekanani, Dara D.
    Parhi, Keshab K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (05) : 1717 - 1728
  • [34] An efficient approach for detecting exudates in diabetic retinopathy images.
    Prakash, N. B.
    Selvathi, D.
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 : S414 - S418
  • [35] The Diagnosis of Diabetic Retinopathy: A Transfer Learning Approach
    Noor, Farhan Nabil Mohd
    Majeed, Anwar P. P. Abdul
    Razman, Mohd Azraai Mod
    Khairuddin, Ismail Mohd
    Isa, Wan Hasbullah Mohd
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 596 - 601
  • [36] Deep learning approach for diabetic retinopathy screening
    Colas, E.
    Besse, A.
    Orgogozo, A.
    Schmauch, B.
    Meric, N.
    Besse, E.
    ACTA OPHTHALMOLOGICA, 2016, 94
  • [37] Deep Learning Approach to Diabetic Retinopathy Detection
    Tymchenko, Borys
    Marchenko, Philip
    Spodarets, Dmitry
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 501 - 509
  • [38] A Deep Learning Approach for the Diabetic Retinopathy Detection
    Sebti, Riad
    Zroug, Siham
    Kahloul, Laid
    Benharzallah, Saber
    6TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS, 2022, 393 : 459 - 469
  • [39] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [40] DETECTING DIABETIC-RETINOPATHY
    NEWSOM, R
    BRITISH MEDICAL JOURNAL, 1991, 302 (6769): : 175 - 175