Ultra-low-power second-order nonlinear optics on a chip

被引:55
|
作者
McKenna, Timothy P. [1 ,2 ]
Stokowski, Hubert S. [1 ]
Ansari, Vahid [1 ]
Mishra, Jatadhari [1 ]
Jankowski, Marc [1 ,2 ]
Sarabalis, Christopher J. [1 ,3 ]
Herrmann, Jason F. [1 ]
Langrock, Carsten [1 ]
Fejer, Martin M. [1 ]
Safavi-Naeini, Amir H. [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] NTT Res Inc, Phys & Informat Labs, Sunnyvale, CA 94085 USA
[3] Flux Photon Inc, 580 Crespi Dr Unit R, Pacifica, CA 94044 USA
基金
美国国家科学基金会;
关键词
FREQUENCY COMB GENERATION; LITHIUM-NIOBATE; SILICON-NITRIDE; 2ND-HARMONIC GENERATION; INTEGRATED-CIRCUITS; WAVE-GUIDES; CONVERSION; EFFICIENT; PLATFORM;
D O I
10.1038/s41467-022-31134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, the authors demonstrate a chip-scale device that realizes a comprehensive set of resonant second order nonlinear processes including optical parametric oscillation with a threshold power of 70 microwatts. Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Second-order nonlinear optics based on chiral materials
    Kauranen, Martti
    Busson, Bertrand
    Van Elshocht, Sven
    Verbiest, Thierry
    Persoons, André
    Nuckolls, Colin
    Katz, Thomas J.
    Optics and Photonics News, 2000, 11 (12): : 24 - 25
  • [22] Highly stable copolyimides for second-order nonlinear optics
    Yu, D
    Gharavi, A
    Yu, LP
    MACROMOLECULES, 1996, 29 (19) : 6139 - 6142
  • [24] A new polyurethane for second-order nonlinear optics.
    Woo, HY
    Lee, KS
    Shim, HK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U173 - U174
  • [25] Highly stable copolyimides for second-order nonlinear optics
    Yu, D
    Li, WJ
    Gharavi, A
    Yu, LP
    PHOTONIC AND OPTOELECTRONIC POLYMERS, 1997, 672 : 123 - 132
  • [26] High temperature polyquinolines for second-order nonlinear optics
    Chen, TA
    Jen, AKY
    Zhang, Y
    Liu, YJ
    Zhang, XQ
    Kenney, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 207 - PMSE
  • [27] Poled Amorphous Polymers for Second-Order Nonlinear Optics
    Eich, Manfred
    Bjorklund, Gary C.
    Yoon, Do Y.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 1990, 1 (02) : 189 - 198
  • [28] Development of functionalized polyetherimides for second-order nonlinear optics
    Lee, KS
    Moon, KJ
    Shim, HK
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1997, 294 : 241 - 244
  • [29] Second-order nonlinear optics of chiral thin films
    Kauranen, M
    Verbiest, T
    Maki, JJ
    Van Elshocht, S
    Persoons, A
    HYPER-STRUCTURED MOLECULES I: CHEMISTRY, PHYSICS AND APPLICATIONS, 1999, : 179 - 200