Generic Hubbard model description of semiconductor quantum-dot spin qubits

被引:71
|
作者
Yang, Shuo [1 ]
Wang, Xin [1 ]
Das Sarma, S. [1 ]
机构
[1] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 16期
关键词
COULOMB-BLOCKADE; COMPUTATION;
D O I
10.1103/PhysRevB.83.161301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a Hubbard model as the simple quantum generalization of the classical capacitance circuit model to study semiconductor quantum-dot spin qubits. We prove theoretically that our model is equivalent to the usual capacitance circuit model in the absence of quantum fluctuations. However, our model naturally includes quantum effects such as hopping and spin exchange. The parameters of the generalized Hubbard model can either be directly read off from the experimental plot of the stability diagram or be calculated from the microscopic theory, establishing a quantitative connection between the two. We show that, while the main topology of the charge stability diagram is determined by the ratio between intersite and on-site Coulomb repulsion, fine details of the stability diagram reveal information about quantum effects. Extracting quantum information from experiments using our Hubbard model approach is simple, but would require the measurement resolution to increase by an order of magnitude.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Semiconductor quantum-dot photonic crystals
    NEC Research Inst, Princeton, United States
    IQEC Int Quantum Electron Conf Proc, (255-256):
  • [32] Controlled Phase Gate of Spin Qubits in Two Quantum-Dot Single-Photon Emitters
    Kim, Juhyeon
    Croft, Zachary
    Steel, Duncan
    Ku, Pei-Cheng
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [33] Oscillatory changes in the tunneling magnetoresistance effect in semiconductor quantum-dot spin valves
    Hamaya, K.
    Kitabatake, M.
    Shibata, K.
    Jung, M.
    Kawamura, M.
    Ishida, S.
    Taniyama, T.
    Hirakawa, K.
    Arakawa, Y.
    Machida, T.
    PHYSICAL REVIEW B, 2008, 77 (08):
  • [34] Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in Si double quantum dots
    Das Sarma, S.
    Wang, Xin
    Yang, Shuo
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [35] Design space of quantum dot spin qubits
    Rassekh, Amin
    Shalchian, Majid
    Sallese, Jean-Michel
    Jazaeri, Farzan
    PHYSICA B-CONDENSED MATTER, 2023, 666
  • [36] Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
    Hensgens, T.
    Fujita, T.
    Janssen, L.
    Li, Xiao
    Van Diepen, C. J.
    Reichl, C.
    Wegscheider, W.
    Das Sarma, S.
    Vandersypen, L. M. K.
    NATURE, 2017, 548 (7665) : 70 - +
  • [37] Local measurement of the entanglement between two quantum-dot qubits
    Liu, Jin
    Jiang, Zhao-Tan
    Shao, Bin
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [38] Quantum-dot cluster-state computing with encoded qubits
    Weinstein, YS
    Hellberg, CS
    Levy, J
    PHYSICAL REVIEW A, 2005, 72 (02)
  • [39] Static gain saturation model of quantum-dot semiconductor optical amplifiers
    Kim, Jungho
    Laemmlin, Matthias
    Meuer, Christian
    Bimberg, Dieter
    Eisenstein, Gadi
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (7-8) : 658 - 666
  • [40] Spin current through quantum-dot spin valves
    Wang, J.
    Xing, D. Y.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (46) : 10437 - 10443