A Partially Pole-Embedded Transducer for Heat-Assisted Magnetic Recording

被引:0
|
作者
Eason, Kwaku [1 ]
机构
[1] Symphonious Technol, Minneapolis, MN 55416 USA
关键词
Heat-assisted magnetic recording (HAMR); optical transducer; pole-embedded transducer;
D O I
10.1109/TMAG.2018.2867231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although significant progress has been made toward achieving 10 Tbpsi and beyond, the continued progression of the hard-disk drive development remains a challenging endeavor. A panoptic view indicates several factors that contribute to the challenge, including media as well as recording head design challenges. The heat-assisted magnetic recording (HAMR) head, specifically, has the broad responsibility of producing a magnetic field, delivering light to the optical transducer, and transforming optical energy into localized thermal energy within the media. Resulting thermal gradients in the recording layer exceeding 10 K/nm can often yield a satisfactory recording performance; however, this can be at the expense of elevated temperatures in the system. Here, we discuss an analysis of a write pole-embedded near-field transducer and demonstrate that it can not only provide improved optical efficiency and cooling in the head but also has the potential to achieve competitive thermal gradients in the recording layer, exceeding 20 K/nm, with peak temperatures 750 K < T < 850 K. Moreover, the best case among the parameter space explored here demonstrates the HAMR recording signal-to-noise ratio levels exceeding 22.5 dB at 1000 kFCI. The results of the analysis strongly suggest that a magnetic write pole-embedded transducer potentially may provide an attractive path toward higher linear densities with the HAMR technology.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Micromagnetic modeling for heat-assisted magnetic recording
    Li, Zhenghua
    Wei, Dan
    Wei, Fulin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (22) : 3108 - 3112
  • [22] Thermal Management in Heat-Assisted Magnetic Recording
    Vemuri, Sesha Hari
    Kim, Hyung Min
    Park, Sejoon
    Liu, Yu
    Chung, Pil Seung
    Jhon, Myung S.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [23] Heat-assisted magnetic recording media materials
    Hono, K.
    Takahashi, Y. K.
    Ju, Ganping
    Thiele, Jan-Ulrich
    Ajan, Antony
    Yang, XiaoMin
    Ruiz, Ricardo
    Wan, Lei
    MRS BULLETIN, 2018, 43 (02) : 93 - 99
  • [24] Characterization of heat-assisted magnetic recording channels
    Radhakrishnan, Rathnakumar
    Vasic, Bane
    Erden, Fatih
    He, Ching
    ADVANCES IN INFORMATION RECORDING, 2008, 73 : 23 - +
  • [25] Heat-assisted magnetic recording media materials
    K. Hono
    Y. K. Takahashi
    Ganping Ju
    Jan-Ulrich Thiele
    Antony Ajan
    XiaoMin Yang
    Ricardo Ruiz
    Lei Wan
    MRS Bulletin, 2018, 43 : 93 - 99
  • [26] Lubrication for heat-assisted magnetic recording media
    Zhang, J.
    Ji, R.
    Xu, J. W.
    Ng, J. K. P.
    Xu, B. X.
    Hu, S. B.
    Yuan, H. X.
    Piramanayagam, S. N.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 2546 - 2548
  • [27] Thermal management in heat-assisted magnetic recording
    Black, E. J.
    Bain, J. A.
    Schlesinger, T. E.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (01) : 62 - 66
  • [28] Curvature and Skew in Heat-Assisted Magnetic Recording
    Liu, Zengyuan
    Gilbert, Ian
    Hernandez, Stephanie
    Rea, Chris
    Granz, Steven
    Zhou, Hua
    Blaber, Martin
    Huang, Pin-Wei
    Peng, Chubing
    Ju, Ganping
    Dykes, John W.
    Thiele, Jan-Ulrich
    Seigler, Mike A.
    Rausch, Tim
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (03)
  • [29] Spacing Control in Heat-Assisted Magnetic Recording
    Xiong, Shaomin
    Smith, Robert
    Xu, Jian
    Nishida, Shuji
    Furukawa, Masaru
    Tasaka, Kenji
    Kuroki, Kenji
    Yoon, Yeoungchin
    Wang, Na
    Canchi, Sripathi
    Schreck, Erhard
    Dai, Qing
    Stipe, Barry
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (03)
  • [30] Information stability in heat-assisted magnetic recording
    Kobayashi T.
    Nakatani Y.
    Fujiwara Y.
    Journal of the Magnetics Society of Japan, 2019, 43 (06): : 114 - 119