Prospective validation of a model-informed precision dosing tool for vancomycin in intensive care patients

被引:29
|
作者
ter Heine, Rob [1 ]
Keizer, Ron J. [2 ]
van Steeg, Krista [3 ]
Smolders, Elise J. [1 ,4 ]
van Luin, Matthijs [5 ]
Derijks, Hieronymus J. [6 ,7 ]
de Jager, Cornelis P. C. [8 ]
Frenzel, Tim [9 ]
Bruggemann, Roger [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[2] Insight Rx, San Francisco, CA USA
[3] Ziekenhuisgrp Twente, Dept Clin Pharm, Almelo, Netherlands
[4] Isala Hosp, Dept Pharm, Zwolle, Netherlands
[5] Rijnstate Hosp, Dept Clin Pharm, Arnhem, Netherlands
[6] Jeroen Bosch Hosp, Dept Pharm, Shertogenbosch, Netherlands
[7] Radboud Univ Nijmegen, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[8] Jeroen Bosch Hosp, Dept Intens Care Med, Shertogenbosch, Netherlands
[9] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
关键词
critically ill; model-informed precision dosing; validation; vancomycin; CONTINUOUS-INFUSION; POPULATION; PHARMACOKINETICS; GUIDELINES;
D O I
10.1111/bcp.14360
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims Vancomycin is an important antibiotic for critically ill patients with Gram-positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients. Methods We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%). Conclusion Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.
引用
收藏
页码:2497 / 2506
页数:10
相关论文
共 50 条
  • [21] Implementation of model-informed precision dosing for tamoxifen therapy in patients with breast cancer: A prospective intervention study
    van Nijnatten, Ruben Y. M.
    Buijs, Sanne M.
    Agema, Bram C.
    Fischer, Raphael M. J.
    Moghaddam-Helmantel, Inge Ghobadi
    Contant, Caroline M. E.
    de Jongh, Felix E.
    Huijben, Auke M. T.
    Kop, Manon
    van der Padt-pruijsten, Annemieke
    Zuetenhorst, Hanneke J. M.
    van Schaik, Ron H. N.
    Koch, Birgit C. P.
    Jager, A.
    Koolen, Stijn L. W.
    Mathijssen, Ron H. J.
    BREAST, 2025, 79
  • [22] Model-Informed Precision Dosing of Everolimus: External Validation in Adult Renal Transplant Recipients
    Zwart, Tom C.
    Moes, Dirk Jan A. R.
    van der Boog, Paul J. M.
    van Erp, Nielka P.
    de Fijter, Johan W.
    Guchelaar, Henk-Jan
    Keizer, Ron J.
    ter Heine, Rob
    CLINICAL PHARMACOKINETICS, 2021, 60 (02) : 191 - 203
  • [23] Model-Informed Precision Dosing of Everolimus: External Validation in Adult Renal Transplant Recipients
    Tom C. Zwart
    Dirk Jan A. R. Moes
    Paul J. M. van der Boog
    Nielka P. van Erp
    Johan W. de Fijter
    Henk-Jan Guchelaar
    Ron J. Keizer
    Rob ter Heine
    Clinical Pharmacokinetics, 2021, 60 : 191 - 203
  • [24] Development and Clinical Validation of Model-Informed Precision Dosing for Everolimus in Liver Transplant Recipients
    Lee, Jeayoon
    Kim, In-Wha
    Hong, Suk Kyun
    Han, Nayoung
    Suh, Kyung-Suk
    Oh, Jung Mi
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2024,
  • [25] A Model Averaging/Selection Approach Improves the Predictive Performance of Model-Informed Precision Dosing: Vancomycin as a Case Study
    Uster, David W.
    Stocker, Sophie L.
    Carland, Jane E.
    Brett, Jonathan
    Marriott, Deborah J. E.
    Day, Richard O.
    Wicha, Sebastian G.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) : 175 - 183
  • [26] Model-Informed Precision Dosing of Vancomycin in Hospitalized Children: Implementation and Adoption at an Academic Children's Hospital
    Frymoyer, Adam
    Schwenk, Hayden T.
    Zorn, Yvonne
    Bio, Laura
    Moss, Jeffrey D.
    Chasmawala, Bhavin
    Faulkenberry, Joshua
    Goswami, Srijib
    Keizer, Ron J.
    Ghaskari, Shabnam
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [27] Model-Informed Precision Dosing of Linezolid in Patients with Drug-Resistant Tuberculosis
    Mockeliunas, Laurynas
    Keutzer, Lina
    Sturkenboom, Marieke G. G.
    Bolhuis, Mathieu S.
    Hulskotte, Lotte M. G.
    Akkerman, Onno W.
    Simonsson, Ulrika S. H.
    PHARMACEUTICS, 2022, 14 (04)
  • [28] How promising is model-informed precision dosing in tamoxifen therapy?
    Klopp-Schulze, Lena
    Joerger, Markus
    Kloft, Charlotte
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2018, 40 (01) : 220 - 221
  • [29] Model-Informed Artificial Intelligence: Reinforcement Learning for Precision Dosing
    Ribba, Benjamin
    Dudal, Sherri
    Lave, Thierry
    Peck, Richard W.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 107 (04) : 853 - 857
  • [30] Model-Informed Reinforcement Learning for Enabling Precision Dosing Via Adaptive Dosing
    Tosca, Elena Maria
    De Carlo, Alessandro
    Ronchi, Davide
    Magni, Paolo
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) : 619 - 636