Prospective validation of a model-informed precision dosing tool for vancomycin in intensive care patients

被引:29
|
作者
ter Heine, Rob [1 ]
Keizer, Ron J. [2 ]
van Steeg, Krista [3 ]
Smolders, Elise J. [1 ,4 ]
van Luin, Matthijs [5 ]
Derijks, Hieronymus J. [6 ,7 ]
de Jager, Cornelis P. C. [8 ]
Frenzel, Tim [9 ]
Bruggemann, Roger [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[2] Insight Rx, San Francisco, CA USA
[3] Ziekenhuisgrp Twente, Dept Clin Pharm, Almelo, Netherlands
[4] Isala Hosp, Dept Pharm, Zwolle, Netherlands
[5] Rijnstate Hosp, Dept Clin Pharm, Arnhem, Netherlands
[6] Jeroen Bosch Hosp, Dept Pharm, Shertogenbosch, Netherlands
[7] Radboud Univ Nijmegen, Dept Pharm, Med Ctr, Nijmegen, Netherlands
[8] Jeroen Bosch Hosp, Dept Intens Care Med, Shertogenbosch, Netherlands
[9] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
关键词
critically ill; model-informed precision dosing; validation; vancomycin; CONTINUOUS-INFUSION; POPULATION; PHARMACOKINETICS; GUIDELINES;
D O I
10.1111/bcp.14360
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims Vancomycin is an important antibiotic for critically ill patients with Gram-positive bacterial infections. Critically ill patients typically have severely altered pathophysiology, which leads to inefficacy or toxicity. Model-informed precision dosing may aid in optimizing the dose, but prospectively validated tools are not available for this drug in these patients. We aimed to prospectively validate a population pharmacokinetic model for purpose model-informed precision dosing of vancomycin in critically ill patients. Methods We first performed a systematic evaluation of various models on retrospectively collected pharmacokinetic data in critically ill patients and then selected the best performing model. This model was implemented in the Insight Rx clinical decision support tool and prospectively validated in a multicentre study in critically ill patients. The predictive performance was obtained as mean prediction error and relative root mean squared error. Results We identified 5 suitable population pharmacokinetic models. The most suitable model was carried forward to a prospective validation. We found in a prospective multicentre study that the selected model could accurately and precisely predict the vancomycin pharmacokinetics based on a previous measurement, with a mean prediction error and relative root mean squared error of respectively 8.84% (95% confidence interval 5.72-11.96%) and 19.8% (95% confidence interval 17.47-22.13%). Conclusion Using a systematic approach, with a retrospective evaluation and prospective verification we showed the suitability of a model to predict vancomycin pharmacokinetics for purposes of model-informed precision dosing in clinical practice. The presented methodology may serve a generic approach for evaluation of pharmacometric models for the use of model-informed precision dosing in the clinic.
引用
收藏
页码:2497 / 2506
页数:10
相关论文
共 50 条
  • [1] Prospective validation of a model-informed precision dosing tool for vancomycin treatment in neonates
    Kalamees, Riste
    Soeorg, Hiie
    Ilmoja, Mari-Liis
    Margus, Kadri
    Lutsar, Irja
    Metsvaht, Tuuli
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2024, 68 (05)
  • [2] Model-informed precision dosing in vancomycin treatment
    Yoon, Sukyong
    Guk, Jinju
    Lee, Sang-Guk
    Chae, Dongwoo
    Kim, Jeong-Ho
    Park, Kyungsoo
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [3] Model-Informed Precision Dosing of Vancomycin in Adult Patients Undergoing Hemodialysis
    Oda, Kazutaka
    Jono, Hirofumi
    Saito, Hideyuki
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2023, 67 (06)
  • [4] Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin
    Hughes, Jasmine H.
    Tong, Dominic M. H.
    Lucas, Sarah Scarpace
    Faldasz, Jonathan D.
    Goswami, Srijib
    Keizer, Ron J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) : 233 - 242
  • [5] Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing
    Taylor, Zachary L.
    Poweleit, Ethan A.
    Paice, Kelli
    Somers, Katherine M.
    Pavia, Kathryn
    Vinks, Alexander A.
    Punt, Nieko
    Mizuno, Tomoyuki
    Girdwood, Sonya Tang
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2023, 12 (12): : 1827 - 1845
  • [6] Model-Informed Precision Dosing (MIPD)
    Perez-Blanco, Jonas Samuel
    Lanao, Jose M.
    PHARMACEUTICS, 2022, 14 (12)
  • [7] Model-informed precision dosing of vancomycin in clinical practice: an intervention development study
    Swartling, Maria
    Hamberg, Anna-Karin
    Furebring, Mia
    Tangden, Thomas
    Nielsen, Elisabet I.
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2025, 47 (01) : 178 - 186
  • [8] Determination of vancomycin exposure target and individualised dosing recommendations for neonates: model-informed precision dosing
    Tang, Zhe
    Guan, Jing
    Li, Jingjing
    Yu, Yanxia
    Qian, Miao
    Cao, Jing
    Shuai, Weiwei
    Jiao, Zheng
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2021, 57 (03)
  • [9] Factors Influencing Integration and Usability of Model-Informed Precision Dosing Software in the Intensive Care Unit
    Chai, Ming G.
    Roberts, Natasha A.
    Dobbins, Chelsea
    Roberts, Jason A.
    Cotta, Menino O.
    APPLIED CLINICAL INFORMATICS, 2024, 15 (02): : 388 - 396
  • [10] Model-Informed Precision Dosing Improves Outcomes in Patients Receiving Vancomycin for Gram-Positive Infections
    Hall, Nicole M.
    Brown, Matthew L.
    Edwards, W. Seth
    Oster, Robert A.
    Cordell, Will
    Stripling, Joshua
    OPEN FORUM INFECTIOUS DISEASES, 2024, 11 (01):