From Pixels to Objects: Cubic Visual Attention for Visual Question Answering

被引:0
|
作者
Song, Jingkuan
Zeng, Pengpeng
Gao, Lianli [1 ]
Shen, Heng Tao [1 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, attention-based Visual Question Answering (VQA) has achieved great success by utilizing question to selectively target different visual areas that are related to the answer. Existing visual attention models are generally planar, i.e., different channels of the last conv-layer feature map of an image share the same weight. This conflicts with the attention mechanism because CNN features are naturally spatial and channel-wise. Also, visual attention models are usually conducted on pixel-level, which may cause region discontinuous problem. In this paper we propose a Cubic Visual Attention (CVA) model by successfully applying a novel channel and spatial attention on object regions to improve VQA task. Specifically, instead of attending to pixels, we first take advantage of the object proposal networks to generate a set of object candidates and extract their associated conv features. Then, we utilize the question to guide channel attention and spatial attention calculation based on the con-layer feature map. Finally, the attended visual features and the question are combined to infer the answer. We assess the performance of our proposed CVA on three public image QA datasets, including COCO-QA, VQA and Visual7W. Experimental results show that our proposed method significantly outperforms the state-of-the-arts.
引用
收藏
页码:906 / 912
页数:7
相关论文
共 50 条
  • [31] Multimodal Encoders and Decoders with Gate Attention for Visual Question Answering
    Li, Haiyan
    Han, Dezhi
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 1023 - 1040
  • [32] Local relation network with multilevel attention for visual question answering
    Sun, Bo
    Yao, Zeng
    Zhang, Yinghui
    Yu, Lejun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 73
  • [33] Focal Visual-Text Attention for Memex Question Answering
    Liang, Junwei
    Jiang, Lu
    Cao, Liangliang
    Kalantidis, Yannis
    Li, Li-Jia
    Hauptmann, Alexander G.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 1893 - 1908
  • [34] Local self-attention in transformer for visual question answering
    Xiang Shen
    Dezhi Han
    Zihan Guo
    Chongqing Chen
    Jie Hua
    Gaofeng Luo
    Applied Intelligence, 2023, 53 : 16706 - 16723
  • [35] Latent Attention Network With Position Perception for Visual Question Answering
    Zhang, Jing
    Liu, Xiaoqiang
    Wang, Zhe
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (03) : 5059 - 5069
  • [36] Stacked Self-Attention Networks for Visual Question Answering
    Sun, Qiang
    Fu, Yanwei
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 207 - 211
  • [37] Stacked Attention based Textbook Visual Question Answering with BERT
    Aishwarya, R.
    Sarath, P.
    Rahman, Shibil P.
    Sneha, U.
    Manmadhan, Sruthy
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [38] Multi-stage Attention based Visual Question Answering
    Mishra, Aakansha
    Anand, Ashish
    Guha, Prithwijit
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9407 - 9414
  • [39] Multimodal attention-driven visual question answering for Malayalam
    Kovath A.G.
    Nayyar A.
    Sikha O.K.
    Neural Computing and Applications, 2024, 36 (24) : 14691 - 14708
  • [40] Deep Attention Neural Tensor Network for Visual Question Answering
    Bai, Yalong
    Fu, Jianlong
    Zhao, Tiejun
    Mei, Tao
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 21 - 37