Application of Chebyshev polynomials to classes of analytic functions

被引:31
|
作者
Dziok, Jacek [1 ]
Raina, Ravinder Krishna [2 ]
Sokol, Janusz [3 ]
机构
[1] Univ Rzeszow, Fac Math & Nat Sci, Rzeszow, Poland
[2] MP Univ Agr & Technol, Udaipur, India
[3] Rzeszow Univ Technol, Dept Math, PL-35959 Rzeszow, Poland
关键词
D O I
10.1016/j.crma.2015.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our objective in this paper is to consider some basic properties of the familiar Chebyshev polynomials in the theory of analytic functions. We investigate some basic useful characteristics for a class H(t), t is an element of (1/2, t] de functions f, with f(0) = 0, f'(0) = 1, analytic in the open unit disc U = {z :\z\ < 1) satisfying the condition that [GRAPHICS] where H(z,t) is the generating function of the second kind of Chebyshev polynomials. The Fekete-Szego problem in the class is also solved. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [21] Orthogonal Functions Based on Chebyshev Polynomials
    Farikhin
    Mohd, Ismail
    MATEMATIKA, 2011, 27 (01) : 97 - 107
  • [22] Applications of Chebyshev polynomials on a Sakaguchi type class of analytic functions associated with quasi-subordination
    Dansu, Emmanuel Jesuyon
    Olatunji, Sunday Oluwafemi
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (01): : 49 - 56
  • [23] Fekete-Szego Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials
    Yousef, Feras
    Frasin, B. A.
    Al-Hawary, Tariq
    FILOMAT, 2018, 32 (09) : 3229 - 3236
  • [24] On Complex (Non-Analytic) Chebyshev Polynomials in ℂ2
    Ionela Moale
    Peter Yuditskii
    Computational Methods and Function Theory, 2011, 11 : 13 - 24
  • [25] An Application of Poisson Distribution Series on Harmonic Classes of Analytic Functions
    Frasin, Basem
    Lupas, Alina Alb
    SYMMETRY-BASEL, 2023, 15 (03):
  • [26] Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree
    Ebadian, Ali
    Cho, Nak Eun
    Adegani, Ebrahim Analouei
    Bulut, Serap
    Bulboaca, Teodor
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [27] Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree
    Ali Ebadian
    Nak Eun Cho
    Ebrahim Analouei Adegani
    Serap Bulut
    Teodor Bulboacă
    Journal of Inequalities and Applications, 2020
  • [29] Orbit functions of SU(n) and Chebyshev polynomials
    Nesterenko, Maryna
    Patera, Jiri
    Tereszkiewicz, Agnieszka
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 133 - +
  • [30] ON THE APPLICATION OF CHEBYSHEV POLYNOMIALS TO NANOROPES TWIST
    Teodorescu, Petre P.
    Munteanu, Ligia
    Chiroiu, Veturia
    Dumitriu, Dan
    Beldiman, Miruna
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2008, 9 (03): : 209 - 215