Congruences of modular forms and Selmer groups

被引:0
|
作者
Dummigan, N [1 ]
机构
[1] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
关键词
modular form; L-function; Bloch-Kato conjecture; Shafarevich-Tate group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the congruence modulo 11 between the normalized cusp form Delta of weight 12 and the normalized cusp form of weight 2 and level 11 'descends' to a congruence between forms of weights 13/2 and 3/2. Combining Waldspurger's theorem with the Bloch-Kato conjecture we predict the existence of elements of order 11 in Selmer groups for certain quadratic twists of Delta. These are then constructed using rational points on twists of the elliptic curve X-0(11), assuming the Birch and Swinnerton-Dyer conjecture on the rank. Everything generalizes to forms of weights 2 + 10s in an 11-adic family, to congruences modulo higher powers of 11, and to other elliptic curves over Q of prime conductor p equivalent to 3 (mod 4) such that L(E-p,1) not equal 0 and p inverted iota ord(p) (j(E)).
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [21] CONGRUENCES FOR SIEGEL MODULAR FORMS
    Choi, Dohoon
    Choie, YoungJu
    Richter, Olav K.
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) : 1455 - 1466
  • [22] Comparing anticyclotomic Selmer groups of positive coranks for congruent modular forms - Part II
    Hatley, Jeffrey
    Lei, Antonio
    JOURNAL OF NUMBER THEORY, 2021, 229 : 342 - 363
  • [23] pr-SELMER COMPANION MODULAR FORMS
    Jha, Somnath
    Majumdar, Dipramit
    Shekhar, Sudhanshu
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (01) : 53 - 87
  • [24] Adjoint modular Galois representations and their Selmer groups
    Hida, H
    Tilouine, J
    Urban, E
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (21) : 11121 - 11124
  • [25] Congruences for Siegel modular forms and their weights
    Boecherer, Siegfried
    Nagaoka, Shoyu
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02): : 227 - 231
  • [26] CONGRUENCES FOR PERIODS OF MODULAR-FORMS
    KOBLITZ, N
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) : 361 - 373
  • [27] CONGRUENCES OF MODULAR FORMS AND THE IWASAWA λ-INVARIANTS
    Hirano, Yuichi
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2018, 146 (01): : 1 - 79
  • [28] On the structure of Selmer groups of p-ordinary modular forms over Zp-extensions
    Kidwell, Keenan
    JOURNAL OF NUMBER THEORY, 2018, 187 : 296 - 331
  • [29] Congruences for Siegel modular forms and their weights
    Siegfried Böcherer
    Shoyu Nagaoka
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2010, 80 : 227 - 231
  • [30] Congruences between Siegel modular forms
    Takashi Ichikawa
    Mathematische Annalen, 2008, 342 : 527 - 532