Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors

被引:12
|
作者
Jang, Woo-Yong [1 ,2 ]
Hayat, Majeed M. [1 ,2 ]
Godoy, Sebastian E. [1 ,2 ]
Bender, Steven C. [3 ]
Zarkesh-Ha, Payman [1 ,2 ]
Krishna, Sanjay [1 ,2 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
OPTICS EXPRESS | 2011年 / 19卷 / 20期
基金
美国国家科学基金会;
关键词
WELL INFRARED PHOTODETECTORS; QUANTUM-DOTS; OVERLAPPING BANDS; FILTER;
D O I
10.1364/OE.19.019454
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
While quantum dots-in-a-well (DWELL) infrared photodetectors have the feature that their spectral responses can be shifted continuously by varying the applied bias, the width of the spectral response at any applied bias is not sufficiently narrow for use in multispectral sensing without the aid of spectral filters. To achieve higher spectral resolutions without using physical spectral filters, algorithms have been developed for post-processing the DWELL's bias-dependent photocurrents resulting from probing an object of interest repeatedly over a wide range of applied biases. At the heart of these algorithms is the ability to approximate an arbitrary spectral filter, which we desire the DWELL-algorithm combination to mimic, by forming a weighted superposition of the DWELL's non-orthogonal spectral responses over a range of applied biases. However, these algorithms assume availability of abundant DWELL data over a large number of applied biases (> 30), leading to large overall acquisition times in proportion with the number of biases. This paper reports a new multispectral sensing algorithm to substantially compress the number of necessary bias values subject to a prescribed performance level across multiple sensing applications. The algorithm identifies a minimal set of biases to be used in sensing only the relevant spectral information for remote-sensing applications of interest. Experimental results on target spectrometry and classification demonstrate a reduction in the number of required biases by a factor of 7 (e.g., from 30 to 4). The tradeoff between performance and bias compression is thoroughly investigated. (C) 2011 Optical Society of America
引用
收藏
页码:19454 / 19472
页数:19
相关论文
共 50 条
  • [21] Characterization of the NEP of Mid-Infrared Upconversion Detectors
    Pedersen, Rasmus Lyngbye
    Hogstedt, Lasse
    Barh, Ajanta
    Meng, Lichun
    Tidemand-Lichtenberg, Peter
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (09) : 681 - 684
  • [22] Room-temperature mid-infrared detectors
    Gordon, Reuven
    SCIENCE, 2021, 374 (6572) : 1201 - 1202
  • [23] Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared
    Song, Yin
    Konar, Arkaprabha
    Sechrist, Riley
    Roy, Ved Prakash
    Duan, Rong
    Dziurgot, Jared
    Policht, Veronica
    Matutes, Yassel Acosta
    Kubarych, Kevin J.
    Ogilvie, Jennifer P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (01):
  • [24] Toward a Nanophotonic Nose: A Compressive Sensing-Enhanced, Optoelectronic Mid-Infrared Spectrometer
    Cerjan, Benjamin
    Halas, Naomi J.
    ACS PHOTONICS, 2019, 6 (01): : 79 - 86
  • [25] Recent trends in mid-infrared sensing
    Mizaikoff, B
    OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS, 2001, 4253 : 76 - 83
  • [26] MID-INFRARED PLATFORMS FOR CHEMICAL SENSING
    Fedeli, J-M
    Labeye, P.
    Marchant, A.
    Lartigue, O.
    Fournier, M.
    Hartmann, J-M
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2018, : 135 - 136
  • [27] Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source
    Petersen, Christian Rosenberg
    Prtljaga, Nikola
    Farries, Mark
    Ward, Jon
    Napier, Bruce
    Lloyd, Gavin Rhys
    Nallala, Jayakrupakar
    Stone, Nick
    Bang, Ole
    OPTICS LETTERS, 2018, 43 (05) : 999 - 1002
  • [28] Mid-infrared gas sensing using a photonic bandgap fiber
    Gayraud, Nicolas
    Kornaszewski, Lukasz W.
    Stone, James M.
    Knight, Jonathan C.
    Reid, Derryck T.
    Hand, Duncan P.
    MacPherson, William N.
    APPLIED OPTICS, 2008, 47 (09) : 1269 - 1277
  • [29] Nanosecond Mid-Infrared Tunable Parametric Laser
    Li Haoning
    Zhang Dacheng
    Zhu Jiangfeng
    Tian Wenlong
    Liu Han
    Kang Renzhu
    Wei Zhiyi
    ACTA OPTICA SINICA, 2019, 39 (11)
  • [30] MEMS Tunable Mid-Infrared Plasmonic Spectrometer
    Stark, Thomas
    Imboden, Matthias
    Kaya, Sabri
    Mertiri, Alket
    Chang, Jackson
    Erramilli, Shyamsunder
    Bishop, David
    ACS PHOTONICS, 2016, 3 (01): : 14 - 19