ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Gamboa, Janete Soares [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2020年 / 12卷 / 01期
关键词
Quasilinear Schrodinger equation; antisymmetric solutions; Nehari manifold; SIGN-CHANGING SOLUTIONS; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; COMPACT SUPPORT; EXISTENCE;
D O I
10.7153/dea-2020-12-03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of antisymmetric solutions for the generalized quasilinear Schrodinger equation in H-1(R-N): -div(theta(u)del u) + 1/2 theta(u)vertical bar del u vertical bar(2) + V(x)u = f(u) in R-N, where N >= 3, V(x) is a positive continuous potential, f(u) is of subcritical growth and theta : R ->[+infinity) is a even C-1- function satisfying some suitable hypotheses. By considering a minimizing problem restricted on a partial Nehan manifold, we prove the existence of antisymmetric solutions via deformation lemma.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条