Myelin plasticity modulates neural circuitry required for learning and behavior

被引:11
|
作者
Kato, Daisuke [1 ]
Wake, Hiroaki [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Med, Dept Anat & Mol Cell Biol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[2] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Saitama, Japan
关键词
Behavior; Learning; Myelin plasticity; Myelination; Neural activity; Neural circuitry; Oligodendrocyte progenitor cell; Oligodendrocyte; OLIGODENDROCYTE PRECURSOR CELLS; WHITE-MATTER MICROSTRUCTURE; CENTRAL-NERVOUS-SYSTEM; INDIVIDUAL OLIGODENDROCYTES; GLIA; CNS; DYNAMICS; RELEASE; CORTEX; DIFFERENTIATION;
D O I
10.1016/j.neures.2020.12.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. Activity-dependent functions of OPCs and OLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Regulation of myelin formation by neural activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. Myelin plasticity changes neural activities that promote behavioral learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Authorcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Oligodendrocytes, which form the myelin sheaths that insulate axons, regulate conduction velocity. Myelinated axons make up the brain's white matter and contribute to the efficiency of information pro-cessing by regulating the timing of neural activity. Traditionally, it has been thought that myelin is a static, inactive insulator around the axon. However, recent studies in humans using magnetic resonance imaging have shown that structural changes in the white matter occur during learning and training, suggesting that 1) white matter change depends on neural activity and 2) activity-dependent changes in white matter are essential for learning and behavior. Furthermore, suppression of oligodendrocytes and their progenitor cells leads to deficits in motor learning and remote fear memory consolidation, suggesting a causal relationship between glial function and the learning process. However, for technical reasons, it remains unclear how myelin-generating glia modulate neural circuitry and what underlying mechanisms they employ to affect learning and behavior. Recent advances in optical and genetic tech-niques have helped elucidate this mechanism. In this review, we highlight evidence that neural activities regulated by myelin plasticity play a pivotal role in learning and behavior and provide further insight into possible therapeutic targets for treating diseases accompanied by myelin impairment. (c) 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [21] Unique neural circuitry for neonatal olfactory learning
    Moriceau, S
    Sullivan, RM
    JOURNAL OF NEUROSCIENCE, 2004, 24 (05): : 1182 - 1189
  • [22] Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment
    Morese, Rosalba
    Rabellino, Daniela
    Sambataro, Fabio
    Perussia, Felice
    Valentini, Maria Consuelo
    Bare, Bruno G.
    Bosco, Francesca M.
    PLOS ONE, 2016, 11 (11):
  • [23] How personal experience modulates the neural circuitry of memories of September 11
    Sharot, Tali
    Martorella, Elizabeth A.
    Delgado, Mauricio R.
    Phelps, Elizabeth A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (01) : 389 - 394
  • [24] Neural Plasticity of Development and Learning
    Galvan, Adriana
    HUMAN BRAIN MAPPING, 2010, 31 (06) : 879 - 890
  • [25] Lysosomal degradation of heparan sulfate is required for normal development of the neural circuitry
    Dwyer, Chrissa
    Lin, Ying
    Dozier, Lara
    Schnaar, Ronald
    Allen, Nicola
    Patrick, Gentry
    Esko, Jeffrey
    MOLECULAR GENETICS AND METABOLISM, 2016, 117 (02) : S42 - S42
  • [26] The myelin proteolipid protein gene modulates apoptosis in neural and non-neural tissues
    R P Skoff
    D A Bessert
    M Cerghet
    M J Franklin
    U K Rout
    K-A Nave
    L Carlock
    M S Ghandour
    D R Armant
    Cell Death & Differentiation, 2004, 11 : 1247 - 1257
  • [27] The myelin proteolipid protein gene modulates apoptosis in neural and non-neural tissues
    Skoff, RP
    Bessert, DA
    Cerghet, M
    Franklin, MJ
    Rout, UK
    Nave, KA
    Carlock, L
    Ghandour, MS
    Armant, DR
    CELL DEATH AND DIFFERENTIATION, 2004, 11 (12): : 1247 - 1257
  • [28] Olfactory neural circuitry mediating reproductive behavior in zebrafish
    Yoshihara, Yoshihiro
    CHEMICAL SENSES, 2015, 40 (03) : 228 - 229
  • [29] Neural circuitry mediating sexual behavior in mice.
    Touhara, Kazushige
    CHEMICAL SENSES, 2016, 41 (04) : 381 - 381
  • [30] Motivational systems and the neural circuitry of maternal behavior in the rat
    Numan, Michael
    DEVELOPMENTAL PSYCHOBIOLOGY, 2007, 49 (01) : 12 - 21