Myelin plasticity modulates neural circuitry required for learning and behavior

被引:11
|
作者
Kato, Daisuke [1 ]
Wake, Hiroaki [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Med, Dept Anat & Mol Cell Biol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[2] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Saitama, Japan
关键词
Behavior; Learning; Myelin plasticity; Myelination; Neural activity; Neural circuitry; Oligodendrocyte progenitor cell; Oligodendrocyte; OLIGODENDROCYTE PRECURSOR CELLS; WHITE-MATTER MICROSTRUCTURE; CENTRAL-NERVOUS-SYSTEM; INDIVIDUAL OLIGODENDROCYTES; GLIA; CNS; DYNAMICS; RELEASE; CORTEX; DIFFERENTIATION;
D O I
10.1016/j.neures.2020.12.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. Activity-dependent functions of OPCs and OLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Regulation of myelin formation by neural activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. Myelin plasticity changes neural activities that promote behavioral learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Authorcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Oligodendrocytes, which form the myelin sheaths that insulate axons, regulate conduction velocity. Myelinated axons make up the brain's white matter and contribute to the efficiency of information pro-cessing by regulating the timing of neural activity. Traditionally, it has been thought that myelin is a static, inactive insulator around the axon. However, recent studies in humans using magnetic resonance imaging have shown that structural changes in the white matter occur during learning and training, suggesting that 1) white matter change depends on neural activity and 2) activity-dependent changes in white matter are essential for learning and behavior. Furthermore, suppression of oligodendrocytes and their progenitor cells leads to deficits in motor learning and remote fear memory consolidation, suggesting a causal relationship between glial function and the learning process. However, for technical reasons, it remains unclear how myelin-generating glia modulate neural circuitry and what underlying mechanisms they employ to affect learning and behavior. Recent advances in optical and genetic tech-niques have helped elucidate this mechanism. In this review, we highlight evidence that neural activities regulated by myelin plasticity play a pivotal role in learning and behavior and provide further insight into possible therapeutic targets for treating diseases accompanied by myelin impairment. (c) 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Regulation of lipid synthesis in myelin modulates neural activity and is required for motor learning
    Kato, Daisuke
    Aoyama, Yuki
    Nishida, Kazuki
    Takahashi, Yutaka
    Sakamoto, Takumi
    Takeda, Ikuko
    Tatematsu, Tsuyako
    Go, Shiori
    Saito, Yutaro
    Kunishima, Shiho
    Cheng, Jinlei
    Hou, Lingnan
    Tachibana, Yoshihisa
    Sugio, Shouta
    Kondo, Reon
    Eto, Fumihiro
    Sato, Shumpei
    Moorhouse, Andrew J.
    Yao, Ikuko
    Kadomatsu, Kenji
    Setou, Mitsutoshi
    Wake, Hiroaki
    GLIA, 2023, 71 (11) : 2591 - 2608
  • [2] Dissection of neural circuitry required for grooming behavior
    Seeds, Andrew
    Simpson, Julie
    JOURNAL OF NEUROGENETICS, 2009, 23 : S64 - S64
  • [3] Neuroprosthetic Learning Utilizes the Same Neural Circuitry Required for Motor Learning
    Monaco, Edward A., III
    Friedlander, Robert M.
    NEUROSURGERY, 2012, 70 (06) : N10 - N10
  • [4] Continuous Neural Plasticity in the Olfactory Intrabulbar Circuitry
    Cummings, Diana M.
    Belluscio, Leonardo
    JOURNAL OF NEUROSCIENCE, 2010, 30 (27): : 9172 - 9180
  • [5] Plasticity of the spinal neural circuitry after injury
    Edgerton, VR
    Tillakaratne, NJK
    Bigbee, AJ
    de Leon, RD
    Roy, RR
    ANNUAL REVIEW OF NEUROSCIENCE, 2004, 27 : 145 - 167
  • [6] Myelin plasticity, neural activity, and traumatic neural injury
    Kondiles, Bethany R.
    Horner, Philip J.
    DEVELOPMENTAL NEUROBIOLOGY, 2018, 78 (02) : 108 - 122
  • [7] ISOLATION OF MUTATIONS AFFECTING NEURAL CIRCUITRY REQUIRED FOR GROOMING BEHAVIOR IN DROSOPHILA-MELANOGASTER
    PHILLIS, RW
    BRAMLAGE, AT
    WOTUS, C
    WHITTAKER, A
    GRAMATES, LS
    SEPPALA, D
    FARAHANCHI, F
    CARUCCIO, P
    MURPHEY, RK
    GENETICS, 1993, 133 (03) : 581 - 592
  • [8] DEVELOPMENTAL PLASTICITY OF NEURAL CIRCUITRY FOR SPATIAL CODING.
    Chan Ying-Shing
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2013, 63 : S36 - S36
  • [9] Neural circuitry and plasticity in the adult vertebrate inner retina
    Maguire, G
    Straiker, A
    Chander, D
    Haamedi, SN
    Piomelli, D
    Stella, N
    Lu, QJ
    FOUNDATIONS AND TOOLS FOR NEURAL MODELING, PROCEEDINGS, VOL I, 1999, 1606 : 65 - 72
  • [10] Myelin plasticity in the ventral tegmental area is required for opioid reward
    Yalcin, Belgin
    Pomrenze, Matthew B.
    Malacon, Karen
    Drexler, Richard
    Rogers, Abigail E.
    Shamardani, Kiarash
    Chau, Isabelle J.
    Taylor, Kathryn R.
    Ni, Lijun
    Contreras-Esquivel, Daniel
    Malenka, Robert C.
    Monje, Michelle
    NATURE, 2024, 630 (8017) : 566 - 568