Optical beam classification using deep learning: A comparison with rule- and feature-based classification

被引:3
|
作者
Alom, Md. Zahangir [1 ,2 ]
Awwal, Abdul A. S. [2 ]
Lowe-Webb, Roger
Taha, Tarek M. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
[2] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94551 USA
关键词
Deep Learning; CNN; DBN; SVM; feature extraction; beam classification;
D O I
10.1117/12.2282903
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deep-learning approach. NIF is the world's largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with picosecond temporal resolution. In the current operational configuration, four independent short-pulse ARC beams are created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The sub-aperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target. Small angular errors in the compressor gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with other machine-learning approaches, such as Deep Neural Network (DNN) and Support Vector Machine (SVM). The experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain the differences and discover any discrepancies or inconsistencies in current classification.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Feature-based design analysis for automatic classification of simulated nonlinear responses using machine learning
    Andersson, N.
    Rinaldo, R.
    Abrahamsson, T.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 3259 - 3273
  • [32] A feature-based trust sequence classification algorithm
    Yahyaoui, Hamdi
    Al-Mutairi, Aisha
    INFORMATION SCIENCES, 2016, 328 : 455 - 484
  • [33] Deep Feature-Based Multitask Joint Sparse Representation for Hyperspectral Image Classification
    Liang, Miaomiao
    Jiao, Licheng
    Xu, Chundong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1578 - 1582
  • [34] A FEATURE-BASED ULTRASONIC SYSTEM FOR IGSCC CLASSIFICATION
    ROSE, J
    AVIOLI, M
    LAPIDES, M
    MATERIALS EVALUATION, 1982, 40 (03) : A13 - A13
  • [35] Multimodal Feature-Based Surface Material Classification
    Strese, Matti
    Schuwerk, Clemens
    Iepure, Albert
    Steinbach, Eckehard
    IEEE TRANSACTIONS ON HAPTICS, 2017, 10 (02) : 226 - 239
  • [36] Feature-based augmentation and classification for tabular data
    Sathianarayanan, Balachander
    Samant, Yogesh Chandra Singh
    Guruprasad, Prahalad S. Conjeepuram
    Hariharan, Varshin B.
    Manickam, Nirmala Devi
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (03) : 481 - 491
  • [37] Adaptive Sensor Management for Feature-Based Classification
    Jenkins, Karen
    Castanon, David A.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 522 - 527
  • [38] Geometric feature-based skin image classification
    Yang, Jinfeng
    Shi, Yihua
    Xiao, Mingliang
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 1158 - +
  • [39] Feature-based fuzzy classification for interpretation of mammograms
    Iyer, NS
    Kandel, A
    Schneider, M
    FUZZY SETS AND SYSTEMS, 2000, 114 (02) : 271 - 280
  • [40] Feature-Based Classification for Audio Bootlegs Detection
    Bestagini, P.
    Zanoni, M.
    Albonico, L.
    Paganini, A.
    Sarti, A.
    Tubaro, S.
    PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS'13), 2013, : 126 - 131