CoNi nano-alloy anchored on biomass-derived N-doped carbon frameworks for enhanced oxygen reduction and evolution reactions

被引:27
|
作者
Charles, Victor [1 ,2 ]
Zhang, Xu [1 ,3 ]
Yuan, Menglei [1 ,2 ]
Zhang, Ke [4 ]
Cui, Kairui [5 ]
Zhang, Jingxian [1 ,2 ]
Zhao, Tongkun [1 ,2 ]
Li, Yaling [5 ]
Liu, Zhanjun [6 ]
Li, Bin [4 ]
Zhang, Guangjin [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Shenyang Univ Chem Engn, Shenyang 110142, Peoples R China
[4] Zhengzhou Tobacco Res Inst CNTC, Zhengzhou 450001, Henan, Peoples R China
[5] Beijing Inst Graph Commun, Beijing Engn Res Ctr Printed Elect, Beijing 102627, Peoples R China
[6] Chinese Acad Sci, Inst Coal Chem, CAS Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[7] Chem & Chem Engn Guangdong Lab, Shantou 515031, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Biomass; Bifunctional electrocatalysts; Zn-air batteries; Porous carbon; Oxygen evolution; Overpotential; BIFUNCTIONAL ELECTROCATALYSTS; POROUS CARBON; EFFICIENT ELECTROCATALYSTS; AIR BATTERIES; NITROGEN; COBALT; NANOFIBERS; NANOTUBES; CATALYSTS; GRAPHENE;
D O I
10.1016/j.electacta.2021.139555
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important for energy conversion systems such as fuel cells, water splitting, and metal-air battery devices. In this work, an earthly abundant and cheap biomass of tobacco-stem was used to prepare a novel porous carbon framework (NiCo@N-C) by incorporating transition metal alloy and nitrogen-rich small molecules. The resultant catalyst affords an onset potential of 0.92 V and a half-wave potential of 0.86 V for oxygen reduction reaction in alkaline media, which is better than commercial Pt/C. Besides, the catalyst also exhibits good oxygen evolution reaction performance with a low overpotential of 280 mV @ 10 mA cm(-2), and the potential gap between ORR and OER is only 0.65 V. The incorporation of NiCo alloy and N heteroatom modulates the electronic structure of the prepared carbon frameworks, creates abundant active sites, and improves charge redistribution, thus resulting in faster ORR and OER reaction kinetics. The applicability of the prepared NiCo@N-C is fully harnessed for use as an air-cathode in a Zn-air battery. This work creates a platform for developing efficient porous and functionalized biomass-derived oxygen electrocatalysts for energy applications. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Biomass-derived nitrogen and sulfur co-doped carbon microtubes for the oxygen reduction reaction
    Song, Luting
    Chang, Jinquan
    Ma, Yanhong
    Jiang, Wenyu
    Xu, Yuanqing
    Liang, Cheng
    Chen, Zhexue
    Zhang, Yong
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (11) : 3251 - 3257
  • [42] Biomass-Derived N-Doped Ordered Mesoporous Carbon-Supported Gold Nanoparticles: An Efficient Catalyst for the Reduction of Nitroaromatic Pollutants
    Zirak, Maryam
    Jalalat, Maryam
    Vahdati-Khajeh, Saleh
    Gargari, Masoumeh Servati
    Rad, Sheida Latifi
    Eftekhari-Sis, Bagher
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2025, 35 (01) : 527 - 537
  • [43] N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media
    Liu, Hu
    Yang, Dong-Hui
    Wang, Xu-Yun
    Zhang, Jiangwei
    Han, Bao-Hang
    Journal of Colloid and Interface Science, 2021, 581 : 362 - 373
  • [44] Biomass-derived metal-free porous carbon electrocatalyst for efficient oxygen reduction reactions
    Jalalah, Mohammed
    Han, HyukSu
    Nayak, Arpan Kumar
    Harraz, Farid A.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 147
  • [45] Pt Nanoparticles Supported on N-Doped Porous Carbon Derived from Metal-Organic Frameworks for Oxygen Reduction
    Wang, Chao
    Wang, Xiaodan
    Lai, Fengyu
    Liu, Zheng
    Dong, Ruohao
    Li, Wen
    Sun, Hongxia
    Geng, Baoyou
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5698 - 5705
  • [46] N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte
    Wang, Luang
    Yin, Fengxiang
    Yao, Changxu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 15913 - 15919
  • [47] Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
    Wu, Jiaqi
    Cheng, Chuanqi
    Lu, Shanshan
    Zhang, Bin
    Shi, Yanmei
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2024, 30 (04) : 369 - 379
  • [48] Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
    Jiaqi Wu
    Chuanqi Cheng
    Shanshan Lu
    Bin Zhang
    Yanmei Shi
    Transactions of Tianjin University, 2024, 30 (04) : 369 - 379
  • [49] N-Doped Carbon Nanofibers and Carbon Nanotubes-Encapsulated CoNi Alloy as Highly Active Oxygen Reduction Catalysts for Direct Methanol Fuel Cells
    Wang, Le
    Guo, Shiquan
    Yu, Shuyan
    Shi, Tianjiao
    Chen, Fei
    Guo, Man
    Zhang, Chong
    Li, Congju
    ENERGY TECHNOLOGY, 2024, 12 (07)
  • [50] A N-doped NbOx nanoparticle electrocatalyst deposited on carbon black for oxygen reduction and evolution reactions in alkaline media
    Seo, Jeongsuk
    Moon, Won-Jin
    Jung, Wan-Gil
    Park, Jun-Woo
    MATERIALS ADVANCES, 2022, 3 (13): : 5315 - 5324