The Bernstein Voronovskaja-type theorem for positive linear approximation operators

被引:18
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Bernstein-Voronovskaja theorem; Positive linear operators; Central moments; Rate of convergence;
D O I
10.1016/j.jat.2014.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the classical Bernstein Voronovskaja-type theorem remains valid in general for all sequences of positive linear approximation operators. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 50 条
  • [41] On the rates of approximation of Bernstein type operators
    Zeng, XM
    Cheng, FF
    JOURNAL OF APPROXIMATION THEORY, 2001, 109 (02) : 242 - 256
  • [42] STATISTICAL APPROXIMATION BY AN INTEGRAL TYPE OF POSITIVE LINEAR OPERATORS
    Sobolu, Rodica
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 157 - 165
  • [43] Pointwise approximation for linear combinations of Bernstein operators
    Guo, SS
    Li, CX
    Liu, XW
    Song, ZJ
    JOURNAL OF APPROXIMATION THEORY, 2000, 107 (01) : 109 - 120
  • [44] THE VORONOVSKAJA TYPE THEOREM FOR A GENERAL CLASS OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu T.
    Miclaus, Dan
    Barbosu, Dan
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 219 - 231
  • [45] Generalized Voronovskaja theorem for q-Bernstein polynomials
    Finta, Zoltan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 619 - 627
  • [46] ON THE DEGREE OF APPROXIMATION IN VORONOVSKAJA'S THEOREM
    Gonska, Heiner
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 103 - 115
  • [47] A-summation process and Korovkin-type approximation theorem for double sequences of positive linear operators
    Karakus, Sevda
    Demirci, Kamil
    MATHEMATICA SLOVACA, 2012, 62 (02) : 281 - 292
  • [48] ON APPROXIMATION BY LINEAR POSITIVE OPERATORS
    MOND, B
    VASUDEVAN, R
    JOURNAL OF APPROXIMATION THEORY, 1980, 30 (04) : 334 - 336
  • [49] Approximation by λ-Bernstein type operators on triangular domain
    Cai, Qing-Bo
    Khan, Asif
    Mansoori, Mohd Shanawaz
    Iliyas, Mohammad
    Khan, Khalid
    FILOMAT, 2023, 37 (06) : 1941 - 1958
  • [50] Blending type approximation by modified Bernstein operators
    Ana Maria Acu
    Arun Kajla
    Advances in Operator Theory, 2022, 7