Design and global optimization of high-efficiency thermophotovoltaic systems

被引:228
|
作者
Bermel, Peter [1 ,2 ,3 ,4 ]
Ghebrebrhan, Michael [2 ,4 ]
Chan, Walker [3 ]
Yeng, Yi Xiang [1 ,3 ]
Araghchini, Mohammad [1 ]
Hamam, Rafif [2 ,4 ]
Marton, Christopher H. [3 ,5 ]
Jensen, Klavs F. [3 ,5 ]
Soljacic, Marin [1 ,2 ,3 ,4 ]
Joannopoulos, John D. [1 ,2 ,3 ,4 ]
Johnson, Steven G. [1 ,6 ]
Celanovic, Ivan [3 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
[4] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[6] MIT, Dept Math, Cambridge, MA 02139 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 19期
基金
美国国家科学基金会;
关键词
TEMPERATURE-DEPENDENCE; SPECTRAL CONTROL; ENERGY-GAP; SOLAR; COATINGS; SILICON; EMITTER; SURFACE;
D O I
10.1364/OE.18.00A314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley-Quiesser limit for a single-junction photovoltaic cell). (C) 2010 Optical Society of America
引用
收藏
页码:A314 / A334
页数:21
相关论文
共 50 条
  • [41] High-efficiency generator design validated
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2003, 82 (09): : 7 - 8
  • [42] Optimization Design and Stability Performance on High-Efficiency Betavoltaic Microbatteries for Space Applications
    LIU Yunpeng
    TANG Xiaobin
    上海航天(中英文), 2020, 37(S1) (中英文) : 62 - 68
  • [43] Design of a high-efficiency magnetorheological valve
    Yoo, JH
    Wereley, NM
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2002, 13 (10) : 679 - 685
  • [44] A High-Efficiency RFID Middleware Design
    Chang, Teng-Hsun
    Chen, Nong-Kun
    Chen, Jiann-Liang
    JOURNAL OF INTERNET TECHNOLOGY, 2009, 10 (04): : 405 - 412
  • [45] TOPICS IN A HIGH-EFFICIENCY FEL DESIGN
    HO, AH
    PANTELL, RH
    FEINSTEIN, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1992, 318 (1-3): : 758 - 764
  • [46] Thermocompressor Design and Operation for High-Efficiency
    Soucy, M.
    Timm, G. L.
    PULP & PAPER-CANADA, 2010, 111 (05) : 34 - 37
  • [47] Photonic crystal emitter design and associated efficiency optimization of radioisotope thermophotovoltaic generators
    Liu, Jitao
    Shu, Yafeng
    Zhang, Yanshi
    Chen, Liangwen
    Wang, Canglong
    Yu, Jianli
    Yang, Lei
    MODERN PHYSICS LETTERS B, 2022, 36 (05):
  • [48] High-Efficiency Microiterative Optimization in QM/MM Simulations of Large Flexible Systems
    Zhang, Yan
    Xie, Peng
    He, Xiaohu
    Han, Keli
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (09) : 4632 - 4643
  • [49] Performance optimization of high-efficiency rotor classifier
    Fang, Ying
    Li, Zhen
    Kong, Wei-Liang
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2010, 30 (12): : 1488 - 1491
  • [50] High-Efficiency Emitter for Thermophotovoltaics: Topology Optimization
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2019,