ON C1,β DENSITY OF METRICS WITHOUT INVARIANT GRAPHS

被引:1
|
作者
Pacheco, Rodrigo P. [1 ]
Ruggiero, Rafael O. [2 ,3 ]
机构
[1] Univ Estado Rio De Janeiro, IME, Dept Geometria & Representacao Grafica, R Sao Francisco Xavier 524, BR-20550900 Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques de Sao Vicente 225, BR-22543900 Rio de Janeiro, Brazil
[3] Univ Aix Marseille, Marseille, France
关键词
Lagrangian graphs; conjugate points; variational calculus; geodesic flows; local perturbations;
D O I
10.3934/dcds.2018012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that given any C-infinity Riemannian structure (T-2, g) in the two torus, epsilon > 0 and beta is an element of 2 (0, 1/3), there exists a C-infinity Riemannian metric (g) over bar with no continuous Lagrangian invariant graphs that is epsilon-C-1,C-beta close to g. The main idea of the proof is inspired in the work of V. Bangert who introduced caps from smoothed cone type C-1 small perturbations of metrics with non-positive curvature to get conjugate points. Our new contribution to the subject is to show that positive curvature cone type small perturbations are "less singular" than non-positive curvature cone type perturbations. Positive curvature geometry allows us to get better estimates for the variation of the C-1 norm of the singular cone in a neighborhood of its vertex.
引用
收藏
页码:247 / 261
页数:15
相关论文
共 50 条
  • [21] Amplitude analyses of the decays χc1 → ηπ+π- and χc1 → η′π+π-
    Adams, G. S.
    Napolitano, J.
    Ecklund, K. M.
    Insler, J.
    Muramatsu, H.
    Park, C. S.
    Pearson, L. J.
    Thorndike, E. H.
    Ricciardi, S.
    Thomas, C.
    Artuso, M.
    Blusk, S.
    Mountain, R.
    Skwarnicki, T.
    Stone, S.
    Zhang, L. M.
    Bonvicini, G.
    Cinabro, D.
    Lincoln, A.
    Smith, M. J.
    Zhou, P.
    Zhu, J.
    Naik, P.
    Rademacker, J.
    Asner, D. M.
    Edwards, K. W.
    Randrianarivony, K.
    Tatishvili, G.
    Briere, R. A.
    Vogel, H.
    Onyisi, P. U. E.
    Rosner, J. L.
    Alexander, J. P.
    Cassel, D. G.
    Das, S.
    Ehrlich, R.
    Gibbons, L.
    Gray, S. W.
    Hartill, D. L.
    Heltsley, B. K.
    Kreinick, D. L.
    Kuznetsov, V. E.
    Patterson, J. R.
    Peterson, D.
    Riley, D.
    Ryd, A.
    Sadoff, A. J.
    Shi, X.
    Sun, W. M.
    Yelton, J.
    PHYSICAL REVIEW D, 2011, 84 (11):
  • [22] Search for the decay χc1(3872) → π+ π- χc1
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Ai, X. C.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Bao, H. -R.
    Batozskaya, V.
    Begzsuren, K.
    Berger, N.
    Berlowski, M.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, T. T.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. L.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    PHYSICAL REVIEW D, 2024, 109 (07)
  • [23] Existence of Absolutely Continuous Invariant Measures for C1 Expanding Circle Maps
    Ounesli, Hamza
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (04)
  • [24] A generic C1 map has no absolutely continuous invariant probability measure
    Avila, Artur
    Bochi, Jairo
    NONLINEARITY, 2006, 19 (11) : 2717 - 2725
  • [25] A NONDIFFERENTIABLE ESSENTIAL IRRATIONAL INVARIANT CURVE FOR A C1 SYMPLECTIC TWIST MAP
    Arnaud, Marie-Claude
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (03) : 583 - 591
  • [26] THE C1 DENSITY OF NONUNIFORM HYPERBOLICITY IN Cr CONSERVATIVE DIFFEOMORPHISMS
    Liang, Chao
    Yang, Yun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1539 - 1552
  • [27] HYDRODYNAMICS AND ELECTRON-MICROSCOPY OF C1 AND C1
    SIEGEL, RC
    STRANG, CJ
    PHILLIPS, ML
    POON, PH
    SCHUMAKER, VN
    FEDERATION PROCEEDINGS, 1981, 40 (03) : 963 - 963
  • [28] The C1 closing lemma for generic C1 endomorphisms
    Rovella, Alvaro
    Sambarino, Martin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1461 - 1469
  • [29] On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
    Johanis, Michal
    Krystof, Vaclav
    Zajicek, Ludek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [30] MODULATION OF C1R ANTIGENICITY BY C1 INACTIVATOR (C1 IN)
    ZICCARDI, RJ
    COOPER, NR
    FEDERATION PROCEEDINGS, 1978, 37 (06) : 1377 - 1377