ON C1,β DENSITY OF METRICS WITHOUT INVARIANT GRAPHS

被引:1
|
作者
Pacheco, Rodrigo P. [1 ]
Ruggiero, Rafael O. [2 ,3 ]
机构
[1] Univ Estado Rio De Janeiro, IME, Dept Geometria & Representacao Grafica, R Sao Francisco Xavier 524, BR-20550900 Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques de Sao Vicente 225, BR-22543900 Rio de Janeiro, Brazil
[3] Univ Aix Marseille, Marseille, France
关键词
Lagrangian graphs; conjugate points; variational calculus; geodesic flows; local perturbations;
D O I
10.3934/dcds.2018012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that given any C-infinity Riemannian structure (T-2, g) in the two torus, epsilon > 0 and beta is an element of 2 (0, 1/3), there exists a C-infinity Riemannian metric (g) over bar with no continuous Lagrangian invariant graphs that is epsilon-C-1,C-beta close to g. The main idea of the proof is inspired in the work of V. Bangert who introduced caps from smoothed cone type C-1 small perturbations of metrics with non-positive curvature to get conjugate points. Our new contribution to the subject is to show that positive curvature cone type small perturbations are "less singular" than non-positive curvature cone type perturbations. Positive curvature geometry allows us to get better estimates for the variation of the C-1 norm of the singular cone in a neighborhood of its vertex.
引用
收藏
页码:247 / 261
页数:15
相关论文
共 50 条