Neural CMOS-Integrated Circuit and Its Application to Data Classification

被引:9
|
作者
Goknar, Izzet Cem [1 ]
Yildiz, Merih [1 ]
Minaei, Shahram [1 ]
Deniz, Engin [1 ]
机构
[1] Dogus Univ, Dept Elect & Commun Engn, TR-34722 Istanbul, Turkey
关键词
Classifier; complementary metal-oxide-semiconductor (CMOS); Fisher; Haberman; Iris;
D O I
10.1109/TNNLS.2012.2188541
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Implementation and new applications of a tunable complementary metal-oxide-semiconductor-integrated circuit (CMOS-IC) of a recently proposed classifier core-cell (CC) are presented and tested with two different datasets. With two algorithms-one based on Fisher's linear discriminant analysis and the other based on perceptron learning, used to obtain CCs' tunable parameters-the Haberman and Iris datasets are classified. The parameters so obtained are used for hard-classification of datasets with a neural network structured circuit. Classification performance and coefficient calculation times for both algorithms are given. The CC has 6-ns response time and 1.8-mW power consumption. The fabrication parameters used for the IC are taken from CMOS AMS 0.35-mu m technology.
引用
收藏
页码:717 / 724
页数:8
相关论文
共 50 条
  • [31] CMOS-Integrated Poly-SiGe Piezoresistive Pressure Sensor
    Gonzalez, P.
    Rakowski, M.
    Segundo, D. San
    Severi, S.
    de Meyer, K.
    Witvrouw, A.
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (08) : 1204 - 1206
  • [32] CMOS-integrated terahertz dielectric near-field sensor
    Chernyadiev, Alexander, V
    But, Dmytro B.
    Kolacinski, Cezary
    Ikamas, Kestutis
    Knap, Wojciech
    Lisauskas, Alvydas
    2024 19TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, EUMIC 2024, 2024, : 230 - 233
  • [33] High-Q CMOS-integrated photonic crystal microcavity devices
    Karan K. Mehta
    Jason S. Orcutt
    Ofer Tehar-Zahav
    Zvi Sternberg
    Reha Bafrali
    Roy Meade
    Rajeev J. Ram
    Scientific Reports, 4
  • [34] Integrated data depth for smooth functions and its application in supervised classification
    Hlubinka, Daniel
    Gijbels, Irene
    Omelka, Marek
    Nagy, Stanislav
    COMPUTATIONAL STATISTICS, 2015, 30 (04) : 1011 - 1031
  • [35] Integrated data depth for smooth functions and its application in supervised classification
    Daniel Hlubinka
    Irène Gijbels
    Marek Omelka
    Stanislav Nagy
    Computational Statistics, 2015, 30 : 1011 - 1031
  • [36] An HV-CMOS Integrated Circuit for Neural Stimulation in Prosthetic Applications
    Bisoni, Lorenzo
    Carboni, Caterina
    Raffo, Luigi
    Carta, Nicola
    Barbaro, Massimo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (02) : 184 - 188
  • [38] Application of BP neural network to the data classification for power testing of the microwave circuit board
    Long Yuan
    Zhao Xiucai
    Guo Rongbin
    PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 2, 2015, : 646 - 650
  • [39] Interface Design for CMOS-Integrated Electrochemical Impedance Spectroscopy (EIS) Biosensors
    Manickam, Arun
    Johnson, Christopher Andrew
    Kavusi, Sam
    Hassibi, Arjang
    SENSORS, 2012, 12 (11) : 14467 - 14488
  • [40] A CMOS-integrated quantum sensor based on nitrogen-vacancy centres
    Kim, Donggyu
    Ibrahim, Mohamed I.
    Foy, Christopher
    Trusheim, Matthew E.
    Han, Ruonan
    Englund, Dirk R.
    NATURE ELECTRONICS, 2019, 2 (07) : 284 - 289