A multiscale model for avascular tumor growth

被引:282
|
作者
Jiang, Y
Pjesivac-Grbovic, J
Cantrell, C
Freyer, JP
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Tennessee, Dept Comp Sci, Knoxville, TN USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA
关键词
D O I
10.1529/biophysj.105.060640
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The desire to understand tumor complexity has given rise to mathematical models to describe the tumor microenvironment. We present a new mathematical model for avascular tumor growth and development that spans three distinct scales. At the cellular level, a lattice Monte Carlo model describes cellular dynamics (proliferation, adhesion, and viability). At the subcellular level, a Boolean network regulates the expression of proteins that control the cell cycle. At the extracellular level, reaction-diffusion equations describe the chemical dynamics (nutrient, waste, growth promoter, and inhibitor concentrations). Data from experiments with multicellular spheroids were used to determine the parameters of the simulations. Starting with a single tumor cell, this model produces an avascular tumor that quantitatively mimics experimental measurements in multicellular spheroids. Based on the simulations, we predict: 1), the microenvironmental conditions required for tumor cell survival; and 2), growth promoters and inhibitors have diffusion coefficients in the range between 10(-6) and 10(-7) cm(2)/ h, corresponding to molecules of size 80-90 kDa. Using the same parameters, the model also accurately predicts spheroid growth curves under different external nutrient supply conditions.
引用
收藏
页码:3884 / 3894
页数:11
相关论文
共 50 条
  • [31] Simulation of avascular tumor growth and drug response in a microfluidic device with a cellular automaton model
    Liu, Sijia
    Li, Yuewu
    Chen, Chunxiao
    Qian, Zhiyu
    Wang, Hongjun
    Yang, Yamin
    MICROFLUIDICS AND NANOFLUIDICS, 2024, 28 (04)
  • [32] An avascular tumor growth model based on porous media mechanics and evolving natural states
    Mascheroni, P.
    Carfagna, M.
    Grillo, A.
    Boso, D. P.
    Schrefler, B. A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (04) : 686 - 712
  • [33] Use of a Multiscale NSCLC Tumor Heterogeneity Model to Predict Tumor Growth Under Gefitinib
    L'Hostis, A.
    Palgen, J.
    Ceres, N.
    Peyronnet, E.
    Perrillat-Mercerot, A.
    Schneider, A.
    Margreiter, M.
    Jacob, E.
    Kahoul, R.
    Illigens, B.
    Hommel, M.
    Boissel, J.
    Bosley, J.
    Monteiro, C.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (10) : S1220 - S1221
  • [34] A numerical method based on the moving mesh for the solving of a mathematical model of the avascular tumor growth
    Bagherpoorfard, Mina
    Soheili, Ali Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 327 - 346
  • [35] Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model
    Iranmanesh, Faezeh
    Nazari, Mohammad Ali
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [36] The effect of time delays on the dynamics of avascular tumor growth
    Byrne, HM
    MATHEMATICAL BIOSCIENCES, 1997, 144 (02) : 83 - 117
  • [37] COMPUTATIONAL MODELING OF SOLID TUMOR GROWTH: THE AVASCULAR STAGE
    Bresch, Didier
    Colin, Thierry
    Grenier, Emmanuel
    Ribba, Benjamin
    Saut, Olivier
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 2321 - 2344
  • [38] On the transversally isotropic pressure effect on avascular tumor growth
    Kariotou, Foteini
    Vafeas, Panayiotis
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (02) : 277 - 282
  • [39] Phase transition in tumor growth: I avascular development
    Izquierdo-Kulich, E.
    Rebelo, I.
    Tejera, E.
    Nieto-Villar, J. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (24) : 6616 - 6623
  • [40] Cell-based models of avascular tumor growth
    Drasdo, D
    Dormann, S
    Hoehme, S
    Deutsch, A
    FUNCTION AND REGULATION OF CELLULAR SYSTEMS, 2004, : 367 - 378