New Modularity Bounds for Graphs G(n, r, s) and Gp (n, r, s)

被引:0
|
作者
Derevyanko, N. M. [1 ]
Koshelev, M. M. [2 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
关键词
modularity; Johnson graphs; clusterization; random graphs;
D O I
10.1134/S0032946021040086
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze the behavior of the modularity of G(n, r, s) graphs in the case of r = o(root n) and n -> infinity and also that of G(p) (n, r, s) graphs for fixed r and s as n -> infinity. For G(n, r, s) graphs with r >= cs(2), we obtain substantial improvements of previously known upper bounds. Upper and lower bounds previously obtained for G(n, r, s) graphs are extended to the family of G(p)(n, r, s) graphs with p = p(n) = omega(n(-r-s-1/2)) and fixed r and s.
引用
收藏
页码:380 / 401
页数:22
相关论文
共 50 条
  • [31] 关于sup(n≥1)|S_n/n(1/r)|(0〈r〈2)和sup(n≥1)|S_n/■|的矩
    陈平炎
    甘师信
    数学物理学报, 2003, (05) : 573 - 582
  • [32] Let's Use the "R.N"
    不详
    AMERICAN JOURNAL OF NURSING, 1942, 42 (01) : A89 - A89
  • [33] S. R. N.
    不详
    AMERICAN JOURNAL OF NURSING, 1947, 47 (04) : 256 - 256
  • [34] Factoring N = prqs for Large r and s
    Coron, Jean-Sebastien
    Faugere, Jean-Charles
    Renault, Guenael
    Zeitoun, Rina
    TOPICS IN CRYPTOLOGY - CT-RSA 2016, 2016, 9610 : 448 - 464
  • [35] Progetto T.R.A.N.S.
    D'Amico, Marilisa
    BIOLAW JOURNAL-RIVISTA DI BIODIRITTO, 2024, (03): : 13 - 14
  • [36] THE PLANCHEREL FORMULA FOR THE LINE BUNDLES ON SL(n + 1, R)/S(GL(1, R) × GL(n, R))
    朱理
    Acta Mathematica Scientia, 2018, (01) : 248 - 268
  • [37] POLY(ALKYL/ARYLOXOTHIAZENES), [N=S(O)R](N) - NEW DIRECTION IN INORGANIC POLYMERS
    ROY, AK
    BURNS, GT
    GRIGORAS, S
    LIE, GC
    INORGANIC AND ORGANOMETALLIC POLYMERS II: ADVANCED MATERIALS AND INTERMEDIATES, 1994, 572 : 344 - 357
  • [38] THE PLANCHEREL FORMULA FOR THE LINE BUNDLES ON SL(n + 1, R)/S(GL(1, R) × GL(n, R))
    朱理
    Acta Mathematica Scientia(English Series), 2018, 38 (01) : 248 - 268
  • [39] Feuerbach's relation and Ptolemy's theorem in R(n)
    Gregorac, RJ
    GEOMETRIAE DEDICATA, 1996, 60 (01) : 65 - 88
  • [40] N o i s e p r o p e r t i e s o f N I R a n d M I R V E C S E L S
    Myara, Mikhael
    Sellahi, Mohamed
    Laurain, Alexandre
    Michon, Adrien
    Sagnes, Isabelle
    Garnache, Arnaud
    VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS) III, 2013, 8606