New Modularity Bounds for Graphs G(n, r, s) and Gp (n, r, s)

被引:0
|
作者
Derevyanko, N. M. [1 ]
Koshelev, M. M. [2 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
关键词
modularity; Johnson graphs; clusterization; random graphs;
D O I
10.1134/S0032946021040086
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze the behavior of the modularity of G(n, r, s) graphs in the case of r = o(root n) and n -> infinity and also that of G(p) (n, r, s) graphs for fixed r and s as n -> infinity. For G(n, r, s) graphs with r >= cs(2), we obtain substantial improvements of previously known upper bounds. Upper and lower bounds previously obtained for G(n, r, s) graphs are extended to the family of G(p)(n, r, s) graphs with p = p(n) = omega(n(-r-s-1/2)) and fixed r and s.
引用
收藏
页码:380 / 401
页数:22
相关论文
共 50 条
  • [2] RЕSЕАRСН ОN СОUРLING VIВRАТIОN ОF WIND ТURВINЕ ТОWЕR ВАSЕD ОN FАSТ
    Chen J.
    Zhao B.
    Yang R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (10): : 359 - 361
  • [3] NEW BOUNDS FOR SZEMEREDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR r4 (N)
    Green, Ben
    Tao, Terence
    MATHEMATIKA, 2017, 63 (03) : 944 - 1040
  • [4] Moderate deviations of triangle counts in sparse Erdős-Rényi random graphs G(n, m) and G(n, p)
    Alvarado, Jose D.
    de Oliveira, Leonardo Goncalves
    Griffiths, Simon
    PROBABILITY THEORY AND RELATED FIELDS, 2025, : 779 - 851
  • [5] S?n?r Sosyolojisi Perspektifinden Theo Angelopoulos'un "S?n?r Uclemesi"
    Tekin, Ferhat
    INSAN & TOPLUM-THE JOURNAL OF HUMANITY & SOCIETY, 2023, 13 (03): : 57 - 80
  • [6] Integral sum graphs Gn and G-r,n are perfect graphs
    Abraham, Julia K.
    Sajidha, P.
    Beineke, Lowell W.
    Vilfred, V.
    Florida, L. Mary
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 77 - 83
  • [7] A study on properties of random interval graphs and Erdős Rényi graph g(n, 2/3)
    Iliopoulos V.
    Iliopoulos, Vasileios (viliop@essex.ac.uk), 1697, Taru Publications (20): : 1697 - 1720
  • [8] What's W-R-O-N-G with R-O-W
    Anon
    APWA Reporter, 2001, 68 (08):
  • [9] UNIFORM CHEBYSHEV BOUNDS ON R(N)
    JENSEN, DR
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1994, 49 (3-4) : 218 - 221
  • [10] Rеsеаrсh оn Intеrасtiоn Primitivеs аnd Intеrасtiоn Mоdеl fоr Pеn + Tоuсh Inрuts
    Tong Q.-S.
    Kang W.-H.
    Fu Q.
    Huang J.
    Tian F.
    Dai G.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (04): : 2022 - 2038