Divergences on Symmetric Cones and Medians

被引:1
|
作者
Kum, Sangho [1 ]
Lim, Yongdo [2 ]
Yun, Sangwoon [3 ]
机构
[1] Chungbuk Natl Univ, Dept Math Educ, Cheongju 28644, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Dept Math Educ, Seoul 03722, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2022年 / 26卷 / 04期
基金
新加坡国家研究基金会;
关键词
symmetric cone; Euclidean Jordan algebra; fidelity; divergence; median; gradient projection method; INFORMATION GEOMETRY; DISTANCE;
D O I
10.11650/tjm/220106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with divergences on the Cartan-Hadamard Riemannian manifold of symmetric cones, self-dual homogeneous cones in Euclidean spaces, and related optimization problems. We introduce a parameterized version of fidelity on symmetric cones, namely sandwiched quasi-relative entropies, and construct a one -parameter family of divergences based on these entropies. We consider the median minimization problem of finite points over these divergences and establish existence and uniqueness of minimizer. The global linear rate convergence of a gradient projec-tion algorithm for solving the median minimization problem is analyzed based on the derived upper bound of the condition number of the Hessian function.
引用
收藏
页码:867 / 886
页数:20
相关论文
共 50 条