Physical properties of InN with the band gap energy of 1.1eV

被引:220
|
作者
Inushima, T
Mamutin, VV
Vekshin, VA
Ivanov, SV
Sakon, T
Motokawa, M
Ohoya, S
机构
[1] Tokai Univ, Dept Commun Engn, Hiratsuka, Kanagawa 2591292, Japan
[2] RAS, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
[3] Tohoku Univ, Inst Met Res, Sendai, Miyagi 9808577, Japan
[4] Kanagawa Ind Tech Res Inst, Ebina 2430422, Japan
关键词
characterization; molecular beam epitaxy; nitrides; semi-conducting indium compounds;
D O I
10.1016/S0022-0248(01)00747-3
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We report the electrical and optical properties of undoped and Mg-doped InN grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates. InN has a hexagonal structure and its c-axis is normal to the (0 0 0 1) sapphire surface. The Raman spectra show a strong E-2 (low) mode at 87 cm(-1). The band gap energies of the samples are much smaller than 1.9 eV. InN with the band gap energy less than 1.5 eV shows resistivity behavior anomaly below 2.5 K. The relation between the low temperature resistivity anomaly and the band gap energy of InN is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:481 / 485
页数:5
相关论文
共 50 条
  • [21] Mie resonances, infrared emission, and the band gap of InN
    Shubina, TV
    Ivanov, SV
    Jmerik, VN
    Solnyshkov, DD
    Vekshin, VA
    Kop'ev, PS
    Vasson, A
    Leymarie, J
    Kavokin, A
    Amano, H
    Shimono, K
    Kasic, A
    Monemar, B
    PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 117407 - 1
  • [22] Band gap and effective electron mass of cubic InN
    Schley, P.
    Napierala, C.
    Goldhahn, R.
    Gobsch, G.
    Schoermann, J.
    As, D. J.
    Lischka, K.
    Feneberg, M.
    Thonke, K.
    Fuchs, F.
    Bechstedt, F.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 6, 2008, 5 (06): : 2342 - +
  • [23] Theoretical study of the band-gap anomaly of InN
    Carrier, P., 1600, American Institute of Physics Inc. (97):
  • [24] Origin of the wide band gap from 0.6 to 2.3 eV in photovoltaic material InN: quantum confinement from surface nanostructure
    Huang, Pu
    Shi, Jun-jie
    Wang, Ping
    Zhang, Min
    Ding, Yi-min
    Wu, Meng
    Lu, Jing
    Wang, Xin-qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17412 - 17418
  • [25] On the crystalline structure, stoichiometry and band gap of InN thin films
    Yu, KM
    Liliental-Weber, Z
    Walukiewicz, W
    Shan, W
    Ager, JW
    Li, SX
    Jones, RE
    Haller, EE
    Lu, H
    Schaff, WJ
    APPLIED PHYSICS LETTERS, 2005, 86 (07) : 1 - 3
  • [26] InN, latest development and a review of the band-gap controversy
    Butcher, KSA
    Tansley, TL
    SUPERLATTICES AND MICROSTRUCTURES, 2005, 38 (01) : 1 - 37
  • [27] Research on the band-gap of InN grown on siticon substrates
    Xiao, HL
    Wang, XL
    Wang, JX
    Zhang, NH
    Liu, HX
    Zeng, YP
    Li, JM
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3 NO 3, 2006, 3 (03): : 594 - +
  • [28] Density-functional theory band gap of wurtzite InN
    Bagayoko, D.
    Franklin, Lashounda
    Journal of Applied Physics, 2005, 97 (12):
  • [29] Density-functional theory band gap of wurtzite InN
    Bagayoko, D
    Franklin, L
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
  • [30] Do we know the fundamental energy gap of InN?
    Bechstedt, F
    Furthmüller, J
    JOURNAL OF CRYSTAL GROWTH, 2002, 246 (3-4) : 315 - 319