A Machine Learning Method For Sensor Authentication Using Hidden Markov Models

被引:0
|
作者
Murphy, Julian [1 ,2 ]
Howells, Gareth [1 ]
McDonald-Maier, Klaus D. [2 ]
机构
[1] Univ Kent, Sch Engn & Digital Arts, Canterbury, New Zealand
[2] Univ Essex, Sch Comp Sci & Elect Engn, Colchester, Essex, England
基金
英国工程与自然科学研究理事会;
关键词
PROBABILISTIC FUNCTIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A machine learning method for sensor based authentication is presented. It exploits hidden markov models to generate stable and synthetic probability density functions from variant sensor data. The principle, and novelty, of the new method are presented in detail together with a statistical evaluation. The results show a marked improvement in stability through the use of hidden markov models.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] An Improved QRS Detection Method using Hidden Markov Models
    Belkadi, M. A.
    Daamouche, A.
    2017 6TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC' 17), 2017, : 81 - 84
  • [32] Identification of Hidden Markov Models Using Spectral Learning with Likelihood Maximization
    Mattila, Robert
    Rojas, Cristian R.
    Krishnamurthy, Vikram
    Wahlberg, Bo
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [33] Training hidden Markov Models using population-based learning
    Maxwell, B
    Anderson, S
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 944 - 944
  • [34] Learning to Learn Sequential Network Attacks Using Hidden Markov Models
    Chadza, Timothy
    Kyriakopoulos, Konstantinos G.
    Lambotharan, Sangarapillai
    IEEE ACCESS, 2020, 8 (08): : 134480 - 134497
  • [35] Incremental Learning of Human Behaviors using Hierarchical Hidden Markov Models
    Kulic, Dana
    Nakamura, Yoshihiko
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [36] Advancing Mobile Sensor Data Authentication: Application of Deep Machine Learning Models
    Ahmed, Tanvir
    Arefin, Sydul
    Parvez, Rezwanul
    Jahin, Fariha
    Sumaiya, Fnu
    Hasan, Munjur
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 538 - 544
  • [37] Snoring detection using a piezo snoring sensor based on hidden Markov models
    Lee, Hyo-Ki
    Lee, Jeon
    Kim, Hojoong
    Ha, Jin-Young
    Lee, Kyoung-Joung
    PHYSIOLOGICAL MEASUREMENT, 2013, 34 (05) : N41 - N49
  • [38] Sensor node tracking using semi-supervised Hidden Markov Models
    Kumar, Sudhir
    Tiwari, Shriman Narayan
    Hegde, Rajesh M.
    AD HOC NETWORKS, 2015, 33 : 55 - 70
  • [39] Expressiveness and Learning of Hidden Quantum Markov Models
    Adhikary, Sandesh
    Srinivasan, Siddarth
    Gordon, Geoff
    Boots, Byron
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4151 - 4160
  • [40] Online learning in discrete hidden Markov models
    Alamino, Roberto
    Caticha, Nestor
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 187 - +