Boosting Sparse Point Cloud Object Detection via Image Fusion

被引:0
|
作者
Shi, Weijing [1 ]
Rajkumar, Ragunathan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
关键词
point cloud; autonomous driving; 3d object detection;
D O I
10.1109/CogMI52975.2021.00036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A point cloud is one of the primary sensing data in autonomous driving. Most 3D object detection algorithms rely heavily on a dense point cloud. Driven by the need for point cloud density, people have devoted considerable resources to pursuing high-resolution lidar systems and point cloud aggregation techniques. In this paper, we take a different view. We explore a new method to boost object detection on a relatively inexpensive sparse point cloud. Our method projects each lidar point on images and uses images to learn the point's local coordinates on the object. It then registers the predicted local coordinates with lidar coordinates to locate the object. At a minimum, our method can detect an object with a single lidar point on the object. Our experiments on the large-scale nuScenes dataset show we can significantly boost detection accuracy on sparse point cloud regions and improve detection distance.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 50 条
  • [11] Gradient-based sparse voxel attacks on point cloud object detection
    Wu, Junqi
    Yao, Wen
    Jia, Shuai
    Jiang, Tingsong
    Zhou, Weien
    Ma, Chao
    Chen, Xiaoqian
    PATTERN RECOGNITION, 2025, 160
  • [12] SINGLE IMAGE CLOUD DETECTION VIA MULTI-IMAGE FUSION
    Workman, Scott
    Rafique, M. Usman
    Blanton, Hunter
    Greenwell, Connor
    Jacobs, Nathan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1468 - 1471
  • [13] Boosting Lidar 3D Object Detection with Point Cloud Semantic Segmentation
    Zhang, Xuchong
    Min, Chong
    Jia, Yijie
    Chen, Liming
    Zhang, Jingmin
    Sun, Hongbin
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7614 - 7621
  • [14] Adaptive learning point cloud and image diversity feature fusion network for 3D object detection
    Weiqing Yan
    Shile Liu
    Hao Liu
    Guanghui Yue
    Xuan Wang
    Yongchao Song
    Jindong Xu
    Complex & Intelligent Systems, 2024, 10 : 2825 - 2837
  • [15] Adaptive learning point cloud and image diversity feature fusion network for 3D object detection
    Yan, Weiqing
    Liu, Shile
    Liu, Hao
    Yue, Guanghui
    Wang, Xuan
    Song, Yongchao
    Xu, Jindong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2825 - 2837
  • [16] Multi-Scale Feature Fusion Point Cloud Object Detection Based on Original Point Cloud and Projection
    Zhang, Zhikang
    Zhu, Zhongjie
    Bai, Yongqiang
    Jin, Yiwen
    Wang, Ming
    ELECTRONICS, 2024, 13 (11)
  • [17] SPBA-Net point cloud object detection with sparse attention and box aligning
    Sha, Haojie
    Gao, Qingrui
    Zeng, Hao
    Li, Kai
    Li, Wang
    Zhang, Xuande
    Wang, Xiaohui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [18] An Object Detection Method Enhanced by Sparse Point Cloud for Low Illumination in Autonomous Driving
    Li, Shuguang
    Liu, Bei
    Zhao, Yang
    Zheng, Ke
    Cheng, Hong
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 293 - 297
  • [19] RGB Pixel-Block Point-cloud Fusion for Object Detection
    Foster, Timothy
    Dahal, Ajaya
    Ball, John E.
    AUTONOMOUS SYSTEMS: SENSORS, PROCESSING, AND SECURITY FOR VEHICLES AND INFRASTRUCTURE 2021, 2021, 11748
  • [20] Cross Fusion of Point Cloud and Learned Image for Loop Closure Detection
    Yue, Haosong
    Cao, Danyang
    Liu, Zhong
    Wang, Tian
    Chen, Weihai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2965 - 2972