Pathway analysis with next-generation sequencing data

被引:4
|
作者
Zhao, Jinying [1 ]
Zhu, Yun [1 ]
Boerwinkle, Eric [2 ]
Xiong, Momiao [2 ]
机构
[1] Tulane Univ, Dept Epidemiol, Sch Publ Hlth & Trop Med, New Orleans, LA 70118 USA
[2] Univ Texas Hlth Sci Ctr Houston, Ctr Human Genet, Div Biostat, POB 20186, Houston, TX 77225 USA
基金
美国国家卫生研究院;
关键词
SET ENRICHMENT ANALYSIS; THERAPEUTIC ANGIOGENESIS; CARDIOVASCULAR-DISEASE; RARE VARIANTS; GENE; ASSOCIATION; SNPS;
D O I
10.1038/ejhg.2014.121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although pathway analysis methods have been developed and successfully applied to association studies of common variants, the statistical methods for pathway-based association analysis of rare variants have not been well developed. Many investigators observed highly inflated false-positive rates and low power in pathway-based tests of association of rare variants. The inflated false-positive rates and low true-positive rates of the current methods are mainly due to their lack of ability to account for gametic phase disequilibrium. To overcome these serious limitations, we develop a novel statistic that is based on the smoothed functional principal component analysis (SFPCA) for pathway association tests with next-generation sequencing data. The developed statistic has the ability to capture position-level variant information and account for gametic phase disequilibrium. By intensive simulations, we demonstrate that the SFPCA-based statistic for testing pathway association with either rare or common or both rare and common variants has the correct type 1 error rates. Also the power of the SFPCA-based statistic and 22 additional existing statistics are evaluated. We found that the SFPCA-based statistic has a much higher power than other existing statistics in all the scenarios considered. To further evaluate its performance, the SFPCA-based statistic is applied to pathway analysis of exome sequencing data in the early-onset myocardial infarction (EOMI) project. We identify three pathways significantly associated with EOMI after the Bonferroni correction. In addition, our preliminary results show that the SFPCA-based statistic has much smaller P-values to identify pathway association than other existing methods.
引用
收藏
页码:507 / 515
页数:9
相关论文
共 50 条
  • [31] Next-Generation Sequencing Demands Next-Generation Phenotyping
    Hennekam, Raoul C. M.
    Biesecker, Leslie G.
    HUMAN MUTATION, 2012, 33 (05) : 884 - 886
  • [32] Next-Generation Sequencing
    Xiong, Momiao
    Zhao, Zhongming
    Arnold, Jonathan
    Yu, Fuli
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010,
  • [33] Next-generation sequencing
    Haferlach, T.
    ONCOLOGY RESEARCH AND TREATMENT, 2016, 39 : 40 - 41
  • [34] Next-generation sequencing
    Jorge S Reis-Filho
    Breast Cancer Research, 11
  • [35] Next-Generation Sequencing
    Le Gallo, Matthieu
    Lozy, Fred
    Bell, Daphne W.
    MOLECULAR GENETICS OF ENDOMETRIAL CARCINOMA, 2017, 943 : 119 - 148
  • [36] Next-generation sequencing
    Reis-Filho, Jorge S.
    BREAST CANCER RESEARCH, 2009, 11
  • [38] SNVerGUI: a desktop tool for variant analysis of next-generation sequencing data
    Wang, Wei
    Hu, Weicheng
    Hou, Fang
    Hu, Pingzhao
    Wei, Zhi
    JOURNAL OF MEDICAL GENETICS, 2012, 49 (12) : 753 - 755
  • [39] SeqAssist: a novel toolkit for preliminary analysis of next-generation sequencing data
    Peng, Yan
    Maxwell, Andrew S.
    Barker, Natalie D.
    Laird, Jennifer G.
    Kennedy, Alan J.
    Wang, Nan
    Zhang, Chaoyang
    Gong, Ping
    BMC BIOINFORMATICS, 2014, 15
  • [40] A survey of tools for variant analysis of next-generation genome sequencing data
    Pabinger, Stephan
    Dander, Andreas
    Fischer, Maria
    Snajder, Rene
    Sperk, Michael
    Efremova, Mirjana
    Krabichler, Birgit
    Speicher, Michael R.
    Zschocke, Johannes
    Trajanoski, Zlatko
    BRIEFINGS IN BIOINFORMATICS, 2014, 15 (02) : 256 - 278