Microwave beam-driven sail flight experiments

被引:0
|
作者
Benford, J [1 ]
Benford, G [1 ]
Goodfellow, K [1 ]
Perez, R [1 ]
Harris, H [1 ]
Knowles, T [1 ]
机构
[1] Microwave Sci Inc, Lafayette, CA 94549 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We have observed flight of ultralight sails of Carbon-Carbon microtruss material at several gees acceleration. To propel the material we sent a 10 kW, 7 GHz beam into a 10(-6) Torr vacuum chamber and onto sails of mass density 5-10 g/m(2). At microwave power densities of similar to kW/cm(2) we saw upward accelerations of several gees and flights of up to 60 cm. Sails so accelerated reached > 2000 K from microwave absorption, a capability of carbon which rules out most materials for high acceleration missions. Diagnostics were optical and IR video photography, reflected microwave power and residual gas analysis. Data analysis and comparison with candidate acceleration mechanisms shows that photonic pressure can account for 3 to 30% of the observed acceleration, so another cause must be present. Future research will measure the thrust precisely using a pendulum to try to identify the acceleration mechanism. In the future, microwave-driven acceleration might be used to propel probes to very high speeds for science missions to the outer salar system, the interstellar region and the nearby stars.
引用
收藏
页码:540 / 545
页数:6
相关论文
共 50 条
  • [21] QUASIPERIODIC BEHAVIOR IN BEAM-DRIVEN STRONG LANGMUIR TURBULENCE
    ROBINSON, PA
    NEWMAN, DL
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (12): : 2319 - 2329
  • [22] Stable witness-beam formation in a beam-driven plasma cathode
    Knetsch, A.
    Sheeran, B.
    Boulton, L.
    Niknejadi, P.
    Poder, K.
    Schaper, L.
    Zeng, M.
    Bohlen, S.
    Boyle, G.
    Brummer, T.
    Chappell, J.
    D'Arcy, R.
    Diederichs, S.
    Foster, B.
    Garland, M. J.
    Caminal, P. Gonzalez
    Hidding, B.
    Libov, V.
    Lindstrom, C. A.
    de la Ossa, A. Martinez
    Meisel, M.
    Parikh, T.
    Schmidt, B.
    Schroder, S.
    Tauscher, G.
    Wesch, S.
    Winkler, P.
    Wood, J. C.
    Osterhoff, J.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (10)
  • [23] Summary of Working Group 4: Beam-driven Accelerators
    Antipov, Sergey
    Corde, Sebastien
    ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777
  • [24] Spatiotemporal correlation functions in beam-driven plasmas with fluctuations
    Tyshetskiy, Yu.
    Roberts, J. A.
    Robinson, P. A.
    Caims, I. H.
    Li, B.
    PHYSICS OF PLASMAS, 2007, 14 (12)
  • [25] Transformer ratio saturation in a beam-driven wakefield accelerator
    Farmer, J. P.
    Martorelli, R.
    Pukhov, A.
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [26] BEAM-DRIVEN CHIRPING INSTABILITY IN DIII-D
    HEIDBRINK, WW
    PLASMA PHYSICS AND CONTROLLED FUSION, 1995, 37 (09) : 937 - 949
  • [27] CLASSICAL COLLISIONAL THEORY OF BEAM-DRIVEN PLASMA CURRENTS
    HIRSHMAN, SP
    PHYSICS OF FLUIDS, 1980, 23 (06) : 1238 - 1243
  • [28] Detuned-Structure-Based Beam-Driven Accelerator
    Jiang, Yong
    Chang, Xiangyun
    Shchelkunov, Sergey V.
    Wang, Lin
    Hirshfield, Jay L.
    2018 IEEE ADVANCED ACCELERATOR CONCEPTS WORKSHOP (AAC), 2018,
  • [29] Proton beam-driven instabilities in an inclined magnetic field
    Khoshbinfar, Soheil
    Khalili, Masome
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040
  • [30] BEAM-PLASMA NEUTRON SOURCES BASED ON BEAM-DRIVEN MIRROR
    COENSGEN, FH
    CASPER, TA
    CORRELL, DL
    DAMM, CC
    FUTCH, AH
    LOGAN, BG
    MOLVIK, AW
    WALTER, CE
    JOURNAL OF FUSION ENERGY, 1989, 8 (3-4) : 237 - 247